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Abstract
Waste in the ocean is one of the most demanding environmental challenges in today’s world. 
Marine debris poses an extensive list of threats to aquatic life and places financial burdens on lo-
cal governments that may be responsible for funding its removal. In recent years, there have been
increased efforts to develop technology that can automate the process of waste removal from 
rivers to prevent the flow of litter into oceans. However, because the process of automatically re-
moving trash requires highly advanced technology, these methods can be very costly to imple-
ment and are therefore only used in select areas. In order to widen the impact of financial re-
sources, it is more effective to automate the process of trash detection and notify the appropriate 
authorities to take action accordingly. In this paper, we propose a mode of trash detection that 
uses the object detection architecture YOLOv5 to detect trash in rivers. To supplement the insuf-
ficient datasets for use in our model, we manually photographed and annotated images of sur-
face-polluted rivers to enable us to train, validate, and test the model. Even with the lack of ex-
tensive data, the performance of our  model is similar to that of other adequate waste detection 
networks.
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Introduction
The  increasing  severity  of  water  pollution  is
leading to a number of concerns that impact the
environment,  society,  and  climate  change.
Aquatic species’ entanglement and ingestion of
marine  debris,  which  threaten  the  health  of
these animals and their ability to acquire food,
pose one of the most prominent environmental
impacts. Furthermore, plastic waste frequently
fragments into microplastics instead of biode-
grading, making it exceedingly difficult to clear
it from the environment. Not only does this af-
fect the diet of aquatic species, but researchers
have  also  found  that  these  plastics  and  the
chemicals they contain might be present in cer-
tain species of fish that people consume. Addi-
tionally, aquatic waste leads to negative social
impacts; for example, it can harm communities
through  decreasing fish populations that com-
munities may depend on to meet a variety of
needs (1). Considering the alarming effects of
marine  debris,  special  attention  should  be
placed on the means with which waste finds its
way into  oceans  and  seas.  For  plastics,  this
main channel is by rivers. While scientists pre-
viously  believed  that  a  few  select  rivers
brought  90  percent  of  river-borne  plastic  to
oceans, new research suggests that over 1,000
rivers carry 80 percent of plastic marine debris
(2). These recent findings emphasize the need
for an approach that combats water pollution in
a way that is both effective and financially-at-
tainable to enable widespread implementation,
viz. a computer vision approach. The computer
vision model that we describe in our paper is
very feasible economically, since it does not re-
quire expensive hardware to  execute. This al-
lows it to be broadly applied to monitor a wide
range of rivers, rather than a select few, which
addresses the previously-mentioned concern of

concentrated impact. While there are technolo-
gies that offer a more advanced and automated
approach to waste removal, such as the Inter-
ceptor  (3)  and  The  Bubble  Barrier  (4),  their
cost  and accessibility  is  a  significant impedi-
ment to their widespread usage. Through com-
bining existing resources, i.e. previously-estab-
lished cleanup groups, with an automated ap-
proach for monitoring, we provide a method of
trash detection that bypasses the high costs of
automated trash removal and only focuses on
monitoring. While our approach would involve
the cost of obtaining cameras that can run our
model and connect to a cloud storage platform
that can be easily accessed from the front end
of trash  cleanup groups, as well as the cost of
installing  them around  rivers  and floodlights,
these costs would certainly be less than the ap-
proximate $380,000 that a single Bubble Bar-
rier costs (4). In the same way that the Bubble
Barrier is strategically placed in areas such that
trash flowing from different river channels join
together,  we propose that  the cameras  should
be placed near channel intersections in order to
minimize  the  amount  of  cameras  needed  and
associated  costs.  This  way,  cameras  do  not
have to maintain surveillance over all sections
of  rivers,  but  rather  focus  on  points  that  all
channels  lead  to.  Different  from  the  Bubble
Barrier, which would only be placed in one sin-
gle location, these cameras could be placed at
multiple intersections to widen the impact. 

In our paper, we develop a model that uses a
novel convolutional neural network, YOLOv5,
to detect litter in rivers. To do this, we first an-
notate the data by localizing the object  in the
image by creating bounding boxes and then la-
beling  the  segmented  areas.  We  then  imple-
ment  the  object  detection  architecture,
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YOLOv5, to enable our model to find impor-
tant features of each trash type, so that it can
detect these distinct components in new images
at a relatively high speed. We also use transfer
learning to save time during the data training
process. By developing a model that performs
real-time detection of trash in littered rivers, we
aim to prevent trash from flowing into larger
bodies  of  water,  where  the  waste  would  be-
come  progressively  harder  to  locate  and  re-
move. In application, our model would send the
aforementioned information as well as location
to  any  water  pollution  or  community  waste-
management  groups  that  are  focused  in  that
area. By sending this information to them, their
otherwise random cleanup searches  are antici-
pated to become more targeted in terms of lo-
cation,  which  will  enhance  the  efficiency  of
their efforts and limit the amount of people and
resources that would otherwise be needed. As a
whole,  these  saved  resources  can  be  used  to
spread  cleanup  efforts  to  a  broader  range  of
rivers. Additionally, along with the Trash An-
notations  in  Context  (TACO) dataset  (5),  we
found and collected our own data from polluted
rivers so that we may create our own dataset
that  is  used  to  train,  validate,  and  test  our
model and offer new data to the research com-
munity. As a whole, we experimentally deter-
mine the set of hyperparameters and conditions
that yield the best performance in our model.
Despite  the  limited  size  of  our  combined
dataset, our model is able to perform similarly
to existing trash detection networks.

Related Work
Recent work by Tharani et al. (6) introduced a
new category of visual trash detection that fo-
cused on waste floating on top of canals. The
primary  purpose  of  the  model  was  to  detect

smaller  objects  that  are  often  overlooked  by
other models, but other trash is categorized as
either medium or large. Tharani et al. compared
commonly-used deep learning object detection
models,  such  as  SSD,  YOLOv3-Tiny,
YOLOv3,  and  RetinaNet,  with  models  that
have an added attention layer to evaluate which
models have the best  performance in a  given
set  of  circumstances.  They  found  that  their
model, YOLOv3 combined with a log-based at-
tention  layer  that  focuses  on  smaller  objects,
had an Average Precision (AP) that surpassed
those of other models on the easy test set. On
the hard test  set,  their  model  performed rela-
tively similar to others in terms of AP. Another
indicator  of  performance  used  in  the  experi-
ment was Intersection over Union (IoU), which
represents the amount of overlap between two
ground  truth  and  predicted  bounding  boxes.
The models all had a similar IoU.

Considering  the  results  of  this  paper  and the
extent to which YOLOv3 coupled with an at-
tention layer outperformed other popular object
detection  models,  we  focus  particularly  on  a
YOLO architecture in our paper. However, we
use  a  more  recent  version,  YOLOv5,  in  our
model  because  of  its  enhanced  accuracy  and
runtime compared to previous versions. Also,
rather  than  dividing  the  detected  trash  into
classes, our model performs binary detection.

In another  paper,  Conley  et  al.  (7)  compared
three  models—Mask  R-CNN,  SOLO,  and
YOLOv6—to determine which one would most
effectively  quantify  the  trash  available  for
transport  into  storm drain  systems.  With  this
goal in mind, the models were trained to detect
the presence of trash rather than to classify the
trash by object type. The outputs of the trained
models were used to calculate the ratio of trash
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to non-trash pixels in the image. Variations in
the  distance  of  the  objects  from  the  camera
were taken into account. Because the Mask R-
CNN model performed best in terms of recall,
precision, and accuracy, it was examined fur-
ther through the use of linear regression analy-
sis. This was used to determine how effectively
the trash pixel ratios the model produced repre-
sented the real, measured volumes of trash.

While these models focused on quantifying the
trash  featured  in  the  images,  our  model  per-
forms binary detection and does not quantify or
classify the waste further. In addition, this pa-
per did not place much weight on the remark-
ably higher amount of frames per second that
YOLO can process images for training as op-
posed to the other models tested.  We use the
YOLO  architecture  to  take  advantage  of  its
greater training speed.

In another paper, Panwar et al. (8) used Aqua-
Vision, a state-of-the-art  model, to detect and
classify underwater trash with the help of Reti-
naNet  to  train  the  model  and  Resnet50  and
FPN as  backbone models.  The objects  in the
images  were  classified  by  material:  glass,
metal, paper, and plastic. They found that the
single-stage  object  detection  approach  that
AquaVision proposed proved to be more accu-
rate than two-stage methods such as Faster R-
CNN.  Additionally,  despite  the  fact  that  the
model was only trained for non-aquatic images,
it  was  nevertheless  able  to  effectively  detect
and  classify  objects  underwater.  It  was  also
trained on very few images but still  produced
satisfactory results when random images were
passed through.

This paper emphasized the increased efficiency
and  accuracy  of  single-stage  object  detectors

compared to the two-stage approach. In light of
this, we employ the single-stage YOLO archi-
tecture to make use of its advantages. In addi-
tion, given their model’s ability to perform in
different environments,  we use a combination
of aquatic and land trash in our dataset.

Recent work by Srivastava et al. (9) aimed to
detect  trash  on  roadways  and  determine
whether  it  would  constitute a  driving hazard.
After  going into  a  breakdown of  the  compo-
nents  that  make  up  the  YOLO  architecture,
they used  transfer  learning  to  retrain  both  a
YOLO model and an M-RCNN model to im-
prove upon their accuracy and precision.  They
then  eliminated  classes  that  had  exceedingly
low  annotations  associated  with  them  to  in-
crease mAP. Next,  they fine-tuned the object
detectors  for  parent  categories  and  mapped
training labels of what the object was (e.g. cig-
arette, bottle) to either “drivable” or “non-driv-
able.”  In  addition,  four  versions  of  the
YOLOv5  architecture  were  compared:  small,
medium,  large,  and  extra-large.  They found
that  as  the  YOLO  architecture  increased  in
complexity, the loss and precision increased as
well.

Similar to how  Srivastava et al. classified the
trash  by  object  type,  we  experimented  with
classification by material as well as binary de-
tection. We also implemented transfer learning
to yield results in a shortened amount of time
similar to Srivastava et al.

Background and Materials

General
To  evaluate  how  well  our  model  performed
during training and validation, we used a num-
ber of performance metrics. Each of them re-
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late to the accuracy of the model and how well
it is able to find objects in images. Because the
relative importance of each metric is subjective
to  the  context  of  the  problem,  analyzing  the
performance of our model as a whole is more
effective than considering each metric in com-
plete isolation from each other.

Metrics
1. Intersection over Union (IoU) - IoU is fre-
quently  used  in  object  detection  to  measure
how well the model found the object. It  is cal-
culated by dividing the area of overlap of the
two bounding boxes (the ground truth box and
the  predicted  box)  by the  total  area  of  both
bounding boxes combined (10). In our paper,
we  did  not  analyze  IoU  independently  but
rather factored it into another metric which we
did analyze,  viz. the mean Average  Precision
(mAP).

2. Precision - Precision measures the amount of
predictions the model made that are correct out
of the total amount of predictions made (10).
Precision = TP / (TP + FP)
where,  TP  =  true  positives  (accurately  pre-
dicted the presence of an object) and FP = false
positives  (inaccurately  predicted  the  presence
of an object)

3. Recall - Recall, also known as sensitivity or
true positive rate (TPR), measures how well the
model  finds  objects  present  in  the  images.  It
evaluates the amount of objects the model ac-
curately predicted out of all the objects present
in the image (10).
Recall = TP / (TP + FN)
where,  TP  =  true  positives  (accurately  pre-
dicted the presence of an object) and FN = false

negatives (object is present but no prediction is
made)

4. Specificity - Specificity, also known as the
true negative rate  (TNR), measures how well
the model is able to find true negatives.
Specificity = TN / (TN + FP)
where,  TN = true negatives  (no prediction  is
made and no object is present) and FP = false
positives  (inaccurately  predicted  the  presence
of an object)

5. mean Average Precision (mAP) - mAP is a
commonly  used metric  to  evaluate  object  de-
tection models,  since it  incorporates  elements
of both precision and recall. It is found by first
obtaining the Average Precision (AP) for each
class, which is done by finding the precision at
different  recall  values  and  averaging  all  of
them together (11). These values are then aver-
aged over all of the classes to obtain the mAP
(12). Because our model performed binary de-
tection and did not consist of  multiple classes,
the mAP and the AP had similar values. Addi-
tionally,  IoU thresholds  are  often used to  re-
strain the values used to calculate mAP. For ex-
ample,  mAP_0.5  indicates  that  all  predicted
bounding boxes with an IoU below 0.5 are sup-
pressed, and only the values above this thresh-
old are returned. This is done to ensure that in-
valid  predictions  are  not  counted towards  the
mAP.

6. Loss - There are two different kinds of loss
we implemented in our paper: box and object-
ness. They were both calculated separately for
our training and validation sets. Box loss mea-
sures  how well  the model  is  able  to  find the
center of an object and how well the predicted
bounding  box  covers  the  object.  Objectness
loss represents the probability of an object ex-
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isting in the predicted bounding box (13). As a
whole,  low  loss  values  represent  desirable
model  performance.  They  indicate  that  the
model  makes  few  errors  and  that  they  are
small,  rather  than  large  (14).  Subtracting  the
loss from 1 returns the overall accuracy of the
model.

7.  F1  Score  -  The  F1  Score  measures  the
model’s accuracy using a combination of preci-
sion and recall scores.
F1 Score = 2 * (Precision * Recall) / (Precision
+ Recall)

Machine Learning Language
1.  CNN  -  A  convolutional  neural  network
(CNN) is a type of network architecture in deep
learning. It first takes in an input image, then
determines the importance of objects and other
image  aspects  based  on  weights,  and  finally
differentiates  all  the  image  components  from
one another  (15).  It  predicts  labels,  bounding
boxes, and confidence probabilities for the ob-
jects in the image (16).

2. YOLOv5 - YOLO stands for You Only Look
Once, referring to the model’s ability to make
predictions  on  an  image  from only  one  pass
through. We used version 5s. It was developed
by Ultralytics, a platform that makes machine
learning  models  available  to  developers.
YOLOv5 is a novel CNN, widely known for its
remarkable  speed.  Furthermore,  YOLO  is  a
one-stage detector, meaning that in addition to
its  high inference  speed,  it  predicts  bounding
boxes in only one step. It does not go through
the process of proposing any candidate bound-
ing boxes or regions. Using a grid box and an-
chors, the model is able to detect objects with
just  a  single  pass  through  (as  mentioned
above),  as opposed to other  models that  may

require many (17). Not only is YOLOv5 a rela-
tively recent development,  but it is also well-
established and has a number of resources asso-
ciated with it.  In addition,  it  does not require
extensive computational resources, and it has a
relatively  high  frames  per  second  (FPS)  rate
compared to other models, so it trains remark-
ably faster which is useful when comparing the
effectiveness  of different  training approaches.
These factors contributed to our determination
of YOLOv5 being the best model for our pur-
pose of trash detection.

Description of YOLOv5
YOLO consists of three main parts: the back-
bone, neck, and head (18).

The model backbone is primarily used for key
feature  extraction.  This  specific  version  of
YOLO uses the Cross Stage Partial Dark Net-
work  (CSPDarknet)  as  a  backbone,  which  is
used in place of other approaches that require
extensive computation  resources  in  order  to
function.  Moreover,  CSPDarknet  significantly
improves  processing  time  with  deeper  net-
works. Within the backbone, there are multiple
blocks:  the  Focus  layer,  BottleNeckCSP  and
Spatial  Pyramid  Pooling  (SPP).  The  primary
purpose of the Focus layer is to reduce layers
and parameters,  while increasing forward and
backward speed (19).  BottleNeckCSP is  used
to  reduce  parameters  and  matrix  multiplica-
tions. SPP is a pooling strategy that eliminates
the need for an image of a fixed size to be in-
putted into the CNN, which may otherwise re-
duce recognition accuracy within images. SPP
allows the computation of feature maps to oc-
cur only once for the image as a whole.  Once
this  is  done,  features  are  pooled  in  a  certain
number of cells (20).
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The  model  neck  creates  feature  pyramids,
which aid in the generalization and identifica-
tion of trash objects of various sizes and scales.
As a whole, they improve the performance of
the model on unseen data.  YOLOv5 uses the
Path Aggregation Network (PANet) for feature
aggregation (18). The image features extracted
from  the  backbone  are  input  into  the  neck,
which  fuses  them to  make  the  semantic,  i.e.
meaningful, information richer. The UpSample
component  rescales  small  data  up,  which  is
needed in order to combine data that has been
pooled  with  the  larger  data.  The  highlighted
features are then passed on to the head to pre-
dict the input features (21).

The model head performs the final task of de-
tection. It predicts the features input from the
neck and applies anchor boxes on them to cre-
ate vectors (18). The vectors store the follow-
ing information: the probability that the bound-
ing box contains an object, the x and y coordi-
nates of the box’s center, the height of the box
expressed as a percent of the cell’s height, and
the conditional probabilities that describe how
likely the object in the cell is to belong to each
class,  given  there  is  an  object  present  in  the
box. If there is more than one bounding box in
a cell, then the above information is added on
to  the  same vector  as  it  pertains  to  the  new
bounding box. The only pieces of information
that are not repeated are the conditional proba-
bilities of the cell  containing objects for each
class, since this pertains to the cell itself rather
than to individual boxes (16). YOLOv5 uses a
YOLO layer as the head, which outputs the re-

sults of detection, such as class, score, location,
and size (22).

Methods
First, this section describes the equipment used
to run the experiments, and it then describes the
datasets  we used and how we acquired them.
We proceed to describe what the model does
and the experimental approaches we took to de-
termine  the  hyperparameters  and  conditions
that  yielded  the  best  model  performance.  Fi-
nally, the section displays a side-by-side com-
parison of a sample set of ground truth data and
the predictions  our model made on those im-
ages.

Environmental Setup
We ran our experiments using Python 3.10 on a
2022  MacBook  Pro  (13-inch)  with  a  16  GB
LPDDR5 Memory and macOS Monterey 12.4
installed. We ran the python code using Google
Colaboratory, which is a Jupyter Notebook ser-
vice, and we used TensorBoard in conjunction
with Weights & Biases to visualize our results.

Datasets
There  are  a  limited  number  of  open-source
datasets that primarily contain images of waste
on  surfaces  of  water.  To  overcome  this,  we
used  a  combination  of  datasets:  one  that  we
gathered  ourselves,  and  the  TACO  dataset
found online.  Since the TACO dataset is com-
posed of images of trash in a number of natural
environments (and not only rivers), it is benefi-
cial for our model to have both datasets to train
on so that it is exposed to images in the target
environment.
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Our Dataset

Figure 1. Sample images we collected for our dataset (see supplementary file for a full set of images)

To obtain a dataset with the desired conditions,
we selected a densely littered river in the area
and photographed the individual pieces of trash
to create our own dataset of (originally) around
1,800 trash objects  annotated among 400 im-
ages.  There  are  numerous  varieties  in  the
dataset, such as the frequency of trash in a sin-
gle  image  and  its  rotation  in  the  water,  but
there  are  also  some  deliberate  consistencies.
For example, the overhead angle at which the
images  were captured  generally  remains  con-
stant; this is to simulate the placement of over-
head cameras that the trash would be monitored
with  in  actual  implementation.  Furthermore,
there are a number of challenges present in the
images that aid in our model’s ability to learn
based  on  realistic  conditions.  For  example,
vegetation  most  frequently  creates  reflections
in the water, but other objects such as trash on
the  water  surface  also  create  reflections  that
can confuse the model. The trash objects used
in  the  dataset  do  not  follow  one  consistent
shape, structure, or size.  This may be because

damaged trash  items  were  used  (e.g.  crushed
bottles and ripped pieces of cardboard) or the
shapes of some objects changed over the dura-
tion  of  our  data  collection.  For  example,  the
shapes of plastic bags were constantly chang-
ing.  Furthermore,  some  items  were  partially
submerged in water or caught in rocks, causing
irregular shapes to protrude from the surface.

Including these challenges in the dataset is cru-
cial for our model to be able to perform well in
a  real  world  application.  Controlled  environ-
ments provide unrealistic conditions and there-
fore cannot be indicative of true model perfor-
mance.

TACO
TACO  (5)  is  an  open-source  dataset  that
includes  images  of  trash  in  natural
environments.  It  contains  1,500  images  with
polygonal  segmentation  annotations,  among
other  data.  These  segmentations  contour  the
objects  of  interest,  making  the  annotations
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more  precise  than  those  of  other  techniques.
However,  because  complex  annotation
techniques require high memory storage, which
in turn requires increased computing resources,
they can be costly to implement (23). For these

reasons, we only used the images provided by
TACO,  rather  than  their  annotations  as  well,
and  manually  annotated  them  using  a  less
computationally- intensive technique.

Figure 2. Sample images from TACO dataset (5).

Annotation

Figure 3. Transformation of a sample image from our dataset after augmentation and annotation using Roboflow 
(24). Images (b) and (c) are augmented with the following: 12° hue, 20% saturation, and 4% brightness. Image (c) is
a darkened version of Image (b) for foreground and annotation visibility. Both bounding boxes in Images (b) and (c)
are labeled with the “trash” class.
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Both our own dataset and that of TACO, origi-
nally totaling around 1,900 images combined,
were manually annotated using Roboflow (24):
a computer vision developer platform for data
collection,  preprocessing,  and  model  training
techniques (11). In Roboflow, we used bound-
ing boxes to segment the waste, and did not in-
clude any reflections of trash in the boxes, nor
were  they  separately  segmented.  The  objects
were all categorized under “trash.” After anno-
tating, we performed a series of augmentations
on the combined dataset of TACO and the im-
ages  we  gathered  using  Roboflow.  The  aug-
mentations  included changes  in  rotation,  hue,
saturation, and brightness. Our overall  dataset
grew  from  around  1,900  images  to  4,100
through augmentation.

Model description
First,  our model  decomposed the input image
into a grid of S by S cells (where S is typically

19). Each cell then predicted a certain number,
B, of bounding boxes, where the center of the
bounding box fell  within the cell,  even if the
box  extended  into  other  cells.  For  each  cell,
vector  y was then created, which stored all of
the information regarding the cell’s  bounding
boxes  and  probability  of  the  cell  containing
trash. Any bounding boxes that  yielded confi-
dence  probabilities  above  a  given  threshold
were returned, and any boxes that did not meet
this criteria  were suppressed. The result  was a
multidimensional  matrix  of  size  SxSx(5B+C),
where C represented the conditional probabili-
ties of the cell containing trash, and 5 was the
number of variables that directly related to each
bounding  box  in  the  cell  (16).  Finally,  our
model output predicted bounding boxes labeled
with the class (which is always “trash” in our
case) and the confidence probability.

Figure 4. Sample images from validation set.

Trials
To determine the best conditions for our model
to be trained in, we experimented with training
it a number of ways and compared the results
they produced. The control model was run un-
der the following conditions and hyperparame-
ters: trained on both raw and augmented data,
had a batch size of 16, used preloaded weights

from the Microsoft (MS) Common Objects in
Context  (COCO) dataset  (25),  and performed
binary  detection.  In  each  trial  of  the  experi-
ment,  one condition  was changed in order  to
examine the significance of each variable rela-
tive to its impact on model performance.
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Augmented Data
To  determine  whether generating  augmented
data  improved  the  model  mAP,  we  executed
our model on a dataset of both raw and aug-
mented data (“Control” model) and on entirely
raw  data  (“No  augmentations”  model).  We
found that generating three images per training
example significantly improved mAP. The best
mAP  produced  by  the  “No  augmentations”
model was 0.403, and the best mAP produced
by the “Control” model was 0.503. Addition-
ally,  the  control  model  reached its  maximum
mAP in significantly fewer steps than the “No
augmentations” model did.  The graph charac-
teristics  showed  that that  running  the  “No
augmentations”  model  for  more  steps/epochs
would likely result in higher mAP, but it  was
still  less efficient  than running on augmented
data.

Batch Size
Batch  size  determines  the  amount  of  images
that  are  propagated  through  the  model.  We
tried running our model on three different batch
sizes: 8 (“Batch size 8”  model), 16 (“Control
model”), and 32 (“Batch size 32” model). We
observed a non significant trend between batch
size and mAP: the  greater the batch size,  the
greater the  mAP.  This  was  unusual;  because
weights  are  updated  after  each  propagation,
networks  usually  run  faster  on  smaller  batch
sizes. In our case, the opposite occurred. How-
ever, as Devansh points out (25), it is important
to not read too far into the effect of batch size
when it has such a small impact on mAP. In fu-
ture work, we intend to further experiment with
this  hyperparameter  by  testing  our  model  on
more extreme differences in batch size.

Transfer Learning

We  used  transfer  learning  by  running  our
model  on  pre-trained  weights  from  the  MS
COCO dataset, and compared its performance
to  that  of  our  model  without  any  preloaded
weights. To do this, we used the overall mAP
with an IoU threshold of 0.5 and above. Using
transfer  learning,  our  model  reached  greater
mAP values in significantly fewer steps, which
was beneficial  in  reducing  the  training  time.
However, the best mAP values produced by the
different methods of training were almost iden-
tical: 0.496 without weights and 0.503 with the
COCO  weights.  Since the  main  purposes  of
transfer learning were to save resources and in-
crease efficiency, rather than to produce better
accuracy, it was evidently effective in this case
and  was preferred  over  training  our  model
without preloaded weights.

Multi-Class Classification
To test our model’s ability to both detect and
classify trash by material, we ran our model on
the same dataset as the control model but with
the  following  annotations:  plastic,  paper,  and
other. Keeping in mind the limited size of the
dataset and the model’s need for plentiful in-
stances of each class, we expected performance
to  degrade  significantly.  This  was  indeed  re-
flected in our results: the highest mAP of the
control model, which performed binary detec-
tion, was 0.503. The highest mAP achieved by
the  “Multi-class  classification”  model  was
0.181.
Image Size
Across all trials, we consistently presented im-
ages of size 416 x 416 pixels in order to bal-
ance speed and accuracy.  Using larger images
would result in a slower processing speed dur-
ing  training,  while  smaller  images  gradually
compromised performance,  hence we selected
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this size as a balanced medium. Also, because
we did not foresee the use of high-resolution
cameras in actual implementation, we deliber-
ately chose this relatively small size.

Model Configuration
We implemented a custom yolov5s configura-
tion developed by Roboflow (24) for all of our

initial trials because of the relatively small size
of  our  dataset.  However,  upon  review,  we
found that using the yolov5x configuration sig-
nificantly improved our results. In light of this,
we  conducted  an  additional  trial  maintaining
the  hyperparamter  selection  of  our  control
model and only changed the configuration from
the custom yolov5s to yolov5x. 

Figure 5. Performance of model variations measured by mAP_0.5 with different hyperparameters/conditions. Note: 
model variations were run for 50 or 100 epochs depending on the graph trend and the likelihood to change based on 
their nature (common or distinctive).

Figure 6. Performance of revised model maintaining hyperparameter selection from the control model and only 
changing the configuration to yolov5x.
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Loss
From the loss curves in Figures 7a and 7b, it
was evident that our model  was making accu-
rate  generalizations  of  the  data  and  was not
overfitting  or  memorizing  the  datasets.  The
training  box  losses  of  our  model  variations
plateaued  between  0.027  and  0.037,  and  the
validation box losses plateaued between 0.051
and 0.055, which  were similar  in range.  This

indicated that during both training and valida-
tion, our model  was able to find the center of
the pieces of trash and predict their bounding
box well. Similarly, the objectness losses of the
training  and  validation  sets  were very  close:
0.015 to  0.018  (training)  and  0.013  to  0.016
(validation). This demonstrated that there was a
very high probability  of waste existing in the
predicted bounding boxes.

Figure 7. Learning curves during the training and validation stages. On the left are box loss curves, and on the right
are objectness loss curves.

Table 1: Highest metric values achieved by model under different conditions. 

Model MAP_0.5 Precision Recall

No augmentations 0.403 0.582 0.390

Batch size 32 0.499 0.712 0.461

Batch size 8 0.485 0.680 0.436

Control 0.503 0.672 0.470

No preloaded weights 0.496 0.624 0.491

Multi-class classification 0.496 0.327 0.335

Yolov5x 0.597 0.705 0.532
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Results and Discussion
As seen from the learning curves in Figure 7, it
is evident from the high similarity and overlap
between the training and validation accuracies,
that each of our model variations did not over-
fit  or memorize the data.  Overall,  taking into
consideration  mAP_0.5,  precision,  recall,  and
accuracy/loss,  we  deduced  that  our  control
model performed the best out of all  of initial
trials.  Since our  control  model  was  executed
under the conditions and hyperparameters that
we hypothesized to be the most effective, our
prediction of the ideal batch size, inclusion of
weights, and mode of detection (binary or clas-
sification) remained true. However, the model
that used the yolov5x configuration performed
better than all the others, including the control
model, which was an unexpected outcome. 

Table 1 shows that, out of our initial trials, our
control model obtained the highest mAP_0.5 of
0.503, the third highest precision of 0.672, and
the second highest recall of 0.470. In terms of
precision,  our control model  under performed
only those with different batch sizes. In terms
of recall, our control model performed less ac-
curately  than the  model  without  preloaded
weights. However, we placed more importance
on the mAP scores because they combined the
precision at different recall values, thereby pro-
viding a more accurate summary of the perfor-
mance as  opposed to  obtaining only the best
precision or recall  value in isolation.  Further-
more,  looking at  Figure 7,  our control  model
also  demonstrated the  lowest/best  loss  and
highest accuracy out of the initial trials. It pre-
sented  with the  lowest  training  box  loss
(0.027),  the  lowest  training  objectness  loss
(0.015 ), the lowest validation box loss (0.051),

and  tied  for  the  lowest  validation  objectness
loss, when compared with the model run with-
out preloaded weights (0.013). Therefore, when
considering all of the metrics as a whole, our
control model was the most accurate at detect-
ing trash out of our first experiments. Our re-
vised  model  with  the  yolov5x  configuration,
however,  outperformed  our  control;  with  an
map, 0.5 of 0.597, precision of 0.705, and re-
call  of  0.532,  it  was more  effective  than  the
other models we experimented with. This fig-
ure could have been further improved had we
used polygonal annotations rather than bound-
ing box annotations, as  described in a number
of  sources.  Based  on  data  provided  by
Roboflow,  in  which  a  similar  YOLO  model
was executed with similar means of augmenta-
tion, we deduce that polygonal annotations sig-
nificantly improve performance. The Roboflow
model  had  an  mAP_0.5  of  0.772  when  pre-
sented with bounding box annotations, and had
an  mAP_0.5  of  0.851  when  presented  with
polygonal annotations (27). This is an increase
of  10.23%.  Based  on  this  data,  applying  the
10.23%  increase,  our  model  would  increase
from  an  mAP_0.5  of  0.597  to  0.658  with
polygonal annotations. Other papers such as Ef-
ficient Interactive Annotation of Segmentation
Datasets  with  Polygon-RNN++ also  support
this notion with data (28). In addition, had we
presented images of a larger size for training,
we anticipate that our model would have per-
formed even better (29). While we did not im-
plement polygonal annotations or larger images
in these experiments in an effort to maintain a
high processing speed and relatively low con-
sumption  of  computing  resources,  if  adopted
into the model, it is anticipated that they would
significantly improve model performance. 
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Figure 8. Confusion matrix of model with yolov5x configuration, which had the best performance.  True Negative 
(TN), does not apply. It would represent a corrected misdetection. In the object detection task there are many possi-
ble bounding boxes that should not be detected within an image. Thus, TN would be all possible bounding boxes 
that were correctly not detected (many possible boxes within an image).

Figure 8 shows that  the true positive rate,  or
sensitivity, was 0.55, and the false negative rate
was 0.45. The true negative rate (or specificity)
does not apply in the context of object detec-
tion tasks however,  since we  were concerned
with the location of objects and not the back-
ground. Low specificities often result from du-

plicate bounding boxes that correctly segment a
single  ground  truth  object,  but  because  there
can only  be one  accurate  predicted  bounding
box for every ground truth bounding box, only
one prediction is considered a true positive and
the rest are misleadingly considered false posi-
tives (30, 31).
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Figure 9. F1 score curve of model with yolov5x configuration, which had the best performance.

The F1 score curve displayed in Figure 9 al-
lowed us to visualize how well our model bal-
anced  precision  and  recall.  Based  on  the
model’s ability to maintain a relatively consis-
tent F1 score across different confidence values

represented by the shape of the curve, as well
as  the  highest  F1 score  reached  of  0.61,  our
model performed relatively well with balancing
precision and recall.

 Future Work

Figure 10. Distribution of object instances by class. 
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To better address the issue of trash detection by
enabling our model to classify trash by mate-
rial, we should collect a larger dataset in the fu-
ture. Not only will our model have a high fre-
quency of images to train on, but the dispersion
of class instances (i.e. the total number of in-
stances of objects of each class present in the
images) will also be more evenly distributed. In
our current dataset, there is an extreme imbal-
ance  between  the  instances  of  the  “plastic”
class and the other classes. The “plastic” class
is over represented, and the “glass” and “other”
classes  are  under  represented.  The  lack  of
evenly  represented  classes  largely  contributes
to our model’s inability to detect trash by mate-
rial type.

Furthermore,  based on our  model’s  enhanced
performance  on  the  augmented  dataset  com-
pared to the raw dataset, we propose that gener-
ating  more  images  per  training  example  will
further  increase  performance  without  overfit-
ting.  Including  more  types  of  augmentation,
such as rotation and exposure, will likely yield
favorable results as well.

Lastly,  as  previously  mentioned,  presenting
polygonal annotations and larger images to the
model could potentially further improve our re-
sults significantly. 

Conclusion
In this  paper,  we applied  a  machine  learning
approach to automate the detection of waste in
rivers. We presented a model of the one-stage
object  detection  architecture  YOLOv5  that
combines  effective  hyperparameters  for  accu-
rate  and  efficient  trash  detection.  Our  model
performance  was similar to that of other trash
detection networks that use much more exten-
sive datasets compared to ours, which is com-
posed of 1,900 original images and 2,200 aug-
mented  images.  We  assembled an  original
dataset, which includes 400 manually-obtained
images and almost  500 augmented  images  of
littered  rivers.  Furthermore,  we  assembled a
new version of the TACO dataset (5) that is an-
notated using bounding boxes  rather  than the
original polygonal segmentations. The latter is
a  more  computationally-intensive  technique.
We have two versions of this combined dataset:
one with the waste categorized by material, and
one  with  it  all  categorized  under  one  class
(“trash”). Overall, although it is a challenging
task,  automating  the  detection  of  waste  in
rivers will help combat water pollution and will
allow resources to be saved and allocated more
effectively.
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