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Abstract
Alzheimer's disease (AD) is a degenerative, incurable neurological disorder that progressively 
damages cognitive abilities. AD affects millions of people worldwide. The biopsy method is the
most reliable method to identify AD, but it has the chance to cause irreparable harm. There are 
many non-invasive alternatives to biopsies that can be used to diagnose AD without undue risk. 
One of these alternatives comprises computer-assisted diagnostic systems, which enable the 
identification of brain-impairing illnesses/diseases. This paper used Magnetic Resonance 
Imaging scans of brains with four different classes to create a model to detect AD. The open-
source OASIS dataset, which serves as the basis for the study's data, was split into an 80% 
training set and a 20% test set. The dataset consisted of classes of moderate AD, mild AD, very 
mild AD, and non-AD scans. Five different Convolutional Neural Network methods were used 
for classification. The DenseNet-121, ResNet-50, ResNet-18, and AlexNet methods achieved 
detection accuracies of 90.5%, 95.1%, 88.4% and 70.5% respectively. The EfficientNetB-7 
method failed to identify many cases of AD.
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Introduction
Alzheimer's  disease  (AD)  is  a  severe
degenerative brain ailment that affects memory
and language abilities (1, 2). AD is one of the
most commonly diagnosed forms of dementia;
for which, there are no definitive solutions (3).
AD  ensues  due  to  many  different  protein
deposits in the brain, specifically beta-amyloid
plaques  and  tau  tangles  (4).  The  build-up  of
these proteins triggers inflammatory responses
in the brain, damaging the neuronal networks,
which  worsens the cognitive  faculties,  causes
memory  impairment,  and  deterioration  of
motor functions (5).

The approaches  investigated  to  stop AD may
not be able to reverse the process (6). However,
they can be used to control its effects and also
limit  its  symptoms,  thus  granting  a  better
quality of life for those suffering from AD (6).
It  is  widely accepted that  early diagnosis can
slow  down  the  progression  of  AD  (7).
However, there is no evidence to suggest that
such  early  diagnosis  can  permanently  halt
potential worsening of the condition (8). There
are  currently  over  6  million  people  in  the
United States diagnosed with AD; this figure is
expected to nearly triple by the year 2050 (9).

There are many ways to diagnose AD; some of
the methods involve physical and neurological
examinations,  laboratory  tests,  and
neuroimaging  (10).  Doctors  utilize  these
approaches  to  attain  a  definitive  diagnosis  of
the condition.  For instance,  positron emission
tomography  (PET)  and  magnetic  resonance
imaging  (MRI)  can  identify  the  regions
affected  by  AD  and  amyloid  plaques  (10).
Other cognitive examinations, such as mini-

mental  state  examination  (MMSE)  and
Montreal  cognitive  assessment  (MoCA),  are
used  to  assess  a  patient's  memory  and  other
intellectual  abilities  (11).  MRI  scans  help  to
precisely  capture  soft  tissue  parameters  (12).
The use of neuroimaging tools in the field of
engineering,  particularly in the area of image
processing,  has  become  more  common  (13,
14). A new field of study has emerged around
creating  computer-aided  diagnostic  (CAD)
systems based on these neuroimaging tools
(15). With computer-aided diagnostic systems,
doctors can get more accurate information that
helps  them  make  a  complete  and  accurate
diagnosis (12).

AD  can  result  in  the  whole  brain  shrinking,
pushing the ventricles out and causing them to
appear  larger  than  usual  (16).  Studies  have
demonstrated  unusual  gray  matter  in
individuals  suffering  from AD.  Compared  to
healthy  participants,  patients  with  AD  had
significantly lower overall gray matter volume,
reduced  total  brain  volume,  and  increased
ventricles (17, 18). As the brain tissue shrinks
and becomes atrophied,  the spaces filled with
cerebrospinal  fluid,  known  as  the  ventricles,
may  appear  enlarged  or  expanded.  This  is
because the reduction in brain volume creates
more  space  for  the  ventricles  to  occupy  (17,
18). The CNN models focus on the thickness of
the gray matter and the size of the ventricles in
order to classify and detect the severity of AD.

Conventional  methods  and  deep-learning
architecture are commonly used for CAD (19).
Conventional  methods  convert  images  into
matrices from which attributes can be extracted
(20). Feature extraction techniques serve two



Original article

Journal of High School Science, 7(3), 2023

primary purposes: finding the key differences
between  targets  and  reducing  the  data's
dimensionality  while  preserving  its  essential
characteristics  (12).  Examples  include  linear
regression,  logistic  regression,  k-nearest
neighbor,  and  support  vector  machines.  This
research  paper  does  not  address  conventional
methods,  instead,  using  deep  learning
architecture  to  evaluate  and  analyze  MRI
images.  Early  layers  of  a  deep  network  can
detect  features,  while  later  layers  combine
these  components  into  more  complex  input
attributes  (21).  This  paper  focuses  more  on
deep-learning  architectures,  to  which  belong
ResNet-50,  ResNet-18,  DenseNet-121,
AlexNet, and EfficientNetB-7.

Literature Review
Much research has been done on detecting and
classifying AD for more than ten years using a
wide  variety  of  approaches.  Park  et.  al.
proposed a deep learning-based model capable
of predicting AD by utilizing large-scale gene
expression  and  DNA  methylation  data  (22).
The purpose was to increase performance using
an alternative feature selection method. Hence
the  study  achieved  an  82.3%  validation
performance (22). Jo et. al. used deep learning
techniques that  were applied to neuroimaging
data  without  requiring  pre-processing  for
feature selection and demonstrated an accuracy
of up to 96.0% in the classification of AD (23).
Allioui et. al. used the segmentation method to
detect AD (24). The U-Net model was used for
the  segmentation,  and  this  methodology
achieved an accuracy rate of 92.7% (24). Gupta
et.  al.  utilized  several  approaches  for  AD
detection  from  MRI  images  (25).  The  team
achieved   94.7%   accuracy   in   binary

classification  and  85.00%  accuracy  in  three-
way classification  (25).  Ozic et.  al.  used 140
MRI  images  for  their  model,  and  the
experiments  yielded  among  the  highest
accuracy  rates  of  79.3%  for  white  matter
classification (26). Bi and Wang used a multi-
task  learning  strategy  based  on  the  Spike
Convolutional  Deep  Boltzmann  machine  and
achieved  an  accuracy  of  95% (27).  Kim and
Kim utilized Deep Neural Network with four
hidden  layers,  which  they  extracted  features
from relative power and attained an accuracy of
75% (28). On the other hand, Ieracitano et. al.
used  CNN  with  two  hidden  layers,  and  the
extracted  feature  was  2D  grayscale
Periodogram  images,  from  which  the  group
achieved the highest accuracy of 92% (29). He
and Zhao used Restricted Boltzmann Machine
with three hidden layers, for which they used
raw  data.  The  highest  accuracy  that  they
achieved  was  92%.  (30).  J  Huggins  et.  al.
utilized  AlexNet  as  a  CNN  model,  and  the
extracted feature was 2 D RGB of Scalogram
images, which achieved 98.9% accuracy (31).
Alvi  et.  al.  used  Long  Short-Term  Memory,
Gated  Recurrent  Unit,  k-Nearest  Neighbors,
and  Support  Vector  Machine  (32).  The  team
achieved  an  accuracy  of  over  95%,  and  the
extracted feature was Raw
Electroencephalogram  Data  (32).  Liu  et.  al.
formulated  a  sophisticated  deep-learning
structure  that  included  stacked  auto-encoders
and  a  SoftMax  output  tier  (33).  The  highest
accuracy they achieved was 45.28% in the 4-
class  classification.  The  mean  values  of  the
binary classification performance of MRI and
PET images were found to be 77.3% (33). Liu
et. al. implemented SAE along with a SoftMax
logistic regressor and a zero-mask approach for
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data  amalgamation  to  extract  supplementary
information  from  multiple  modes  of
neuroimaging  data  (34).  In  2018,  Lu  and
colleagues applied a sparse autoencoder (SAE)
for  initial  training  and employed  deep neural
networks  (DNN)  in  the  final  stage.  They
achieved a classification accuracy of 84.6% for
differentiating  AD  and  healthy  control  cases
and a  prediction  accuracy  of  82.9% for  mild
cognitive  impairment  (MCI)  conversion  (35).
Suk  et.  al.  initialized  SAE  parameters  with
target-unrelated samples and tuned the optimal
parameters  with  target-related  samples  to
obtain a 98.8% accuracy for AD and cognitive
normal  classification  and 83.7% accuracy for
the prediction of MCI to AD conversion (36).
Islam and Zhang achieved a 73.45% accuracy
with  a  416  data  count  (37).  They  concluded
that  AD  can  be  classified  into  three  major
stages (37). Additionally,  they illustrated how
hyper-parameters  from  a  deep  convolutional
neural network could aid in extracting features
from inadequate  medical  image datasets  (37).
Their model was inspired by the Inception-V4
network;  the  network  that  they  provided
accepted  an  MRI  scan,  then  processed  it  by
gathering  the  features  of  each  layer  from the
initial stem layer to the final drop-out layer
(37). For the classification tasks, Subramoniam
et.  al.  employed  Residual  Neural  Networks
(ResNet-101)  in  the  architecture;  they
classified  AD  using  a  dense  neural  network
with a vanilla structure (38). They obtained the
highest  accuracy  in  the  moderate  class,  of
100%  (38).  Subramoniam  and  his  team
recorded an average accuracy of 99.70% on the
OASIS dataset  (38).  Ghazal  et.  al.  utilized  a
four-class  dataset  in  their  research;  a  system
model was suggested based  on 6400 MR

images of Alzheimer's  patients,  resulting in a
91.70%  success  rate  (39).  Guerrero  et.  al.
utilized the data gathered from both ADNI and
ADNI-GO  datasets  (40).  The  ADNI  dataset
contained  511  images  classified  into  four
distinct  categories,  whereas  the  ADNI-GO
dataset included 363 images divided into two
classes. The ADNI dataset achieved a success
rate  of  71%,  with  the  ADNI-GO  dataset
reaching 65% (40). Eskildsen et. al. conducted
a study to find if patterns of cortical thickness
measurements  could  be  used  to  predict
Alzheimer's  Disease  in  those  with  Mild
Cognitive  Impairment  (MCI)  (41).  Distinct
patterns  of  deterioration  were identified,  with
certain  features  selected  as  regions  of  focus
from those patterns; The accuracy was 81%
(41).  Plant  et.  al.  utilized  a  data  mining
framework joined with three types of classifiers
-  Support  Vector  Machine  (SVM),  Bayesian
estimates, and Voting Feature Intervals (VFI) -
to  create  a  numerical  index  for  anticipating
outcomes  in  their  work  (42).  Data  were
acquired  from  32  Alzheimer's  Disease  (AD)
patients,  24  MCI individuals,  and  18 healthy
controls  (42).  Results  from  this  research
indicated  that  pattern  matching  using
multivariate  techniques  achieved  a  highly
accurate rate of 92% in a clinical setting (42).
MRI  surface  morphometry  mapping  was
employed  by  Devanand  et.  al.  in  order  to
examine  and identify  any local  distortions  of
the hippocampus, parahippocampal gyrus, and
entorhinal  cortex that  could indicate  potential
conversion from MCI to AD (43). MRI of the
brain  of  130  people  with  MCI,  labeled  as
broadly  defined,  and  61  healthy  individuals
was  performed  using  surface  morphological
analysis (43).  These  individuals  were
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monitored for approximately four years at one
site as part of the study (43). A research study
by Zhang et. al. explored the use of Multimodal
multi-task  (M3T)  learning  to  make  multiple
predictions from various data sources (44). The
multi-task  feature  selection  process  was
employed to identify the overlapping group of
pertinent  features  when  analyzing  multiple
variables  from  different  sources  (44).  This
same grouping of features was then combined
with  a  multimodal  support  vector  to  make
predictions  for  multiple  (regression  and
classification)  tasks  (44).  Using  MRI,  the
highest  performance  achieved  by  a  single
modality was only 85% (44). SVM is one of

the  most  commonly  used  machine  learning
techniques,  which  allows  for  extracting  high
dimensional and meaningful features to derive
classification  models  for  automated  clinical
diagnosis  (45).  Deep  learning,  a  rapidly
advancing  branch  of  machine  learning  that
utilizes  raw  neuroimaging  information  to
generate features, is gaining substantial interest
in  the  area  of  extensive,  high-dimensional
medical  imaging  exploration  as  proposed  by
Plis  et.  al.  (46).  Deep learning allows  for  an
optimal representation of the data to be derived
from the raw images without  requiring initial
image  pre-processing,  resulting  in  a  more
unbiased and impartial process (46).

Methods and Dataset
The flowchart of the work process is shown in Figure 1.

Figure 1. Flow diagram of the work process

Various  CNN  models  are  used  for
classification, including ResNet-18, DenseNet-
121, AlexNet, EfficientNetB-7, and ResNet-50,
which  will  be  compared  and  evaluated.
AlexNet's seven layers of activation functions,
called  ReLU,  pass  the  positive  output  and
suppress  the  negative  output  in  feature  maps
and set them to zero (47, 48). The deep feature
maps'  dimensions  are  reduced  by three  max-
pooling  layers  (47,  48).  ResNet-50 is  a  deep
learning model that is derived from the ResNet

family  (48,  49).  Other  ResNet  models  are
ResNet-18,  ResNet-34,  ResNet-101,  and
ResNet-152, which demonstrate varying levels
of  accuracy  in  classification  problems.  The
ResNet-50 architecture retains 50 layers of the
convolutional neural network, with 48 of them
being convolutional layers used to extract deep
feature maps (48, 49). Two pooling layers are
employed  to  reduce  the  dimensions  of  deep
feature maps (48,  49). DenseNet-121 consists
of 121 layers, a substantial proportion of which
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are  convolutional  layers  instrumental  in
extracting complex feature maps (50). A pair of
pooling layers are implemented to control the
dimensionality  of  these  feature  maps.
EfficientNetB-7  has  a  total  of  66  million
parameters  (51).  Also, it  is  the most accurate
model  in  the  EfficientNet  family,  being  8.4x
smaller than most of the existing CNNs (52).
These CNNs have shown significant success in
image  recognition  tasks  and  have  been  used
profusely in research papers. Previously these
models  were  used  in  a  research  paper  that
compared eleven CNNs, including ResNet-18,
ResNet-50,  and  DenseNet-121,  to  investigate
their merits in detecting lung abnormalities in
small  datasets  of  COVID-19  patients  (52).
Also,  in  another  research  paper,  sixteen
different  CNNs  were  compared  using  the
CheXpert and COVID-19 Image datasets (53).

The data for this paper was obtained from the
OASIS  dataset  (54).  A  total  of  6400  MR
images  are  in  the  dataset,  consisting  of  four
different classes (54). The dataset is classified
as mild AD, moderate AD, non-AD, and very
mild AD (54).  Some examples  of the dataset
can be found in Table 1.

The dataset consists of 896 images of patients
with  mild  AD,  64  images  of  patients  with
moderate  AD,  3200  images  of  individuals
without  AD  (non-AD),  and  2240  images  of
patients with very mild AD (54). The dataset
was unbalanced; hence different weights were
asssigned to each class. Also, accuracy is not a
sufficient  indicator  when  dealing  with
imbalanced  datasets  because  it  can  be
misleading; thus, other metrics, such as recall,
precision, f-1 score, specificity, and Matthew’s
correlation  coefficient,  were  used  in  this
research paper.

All  the  images  in  the  dataset  have  128x128
pixels;  images  are  resized  accordingly  with
optimal  image  size  for  each architecture.  For
instance,  ResNet-50  uses  images  of  224x224
pixels.  The  initial  learning  rate  was set  to
0.001 for  all  deep learning architectures.  The
epoch  number  was  set to  50,  because,  after
reaching  that  epoch,  there  were  no  further
changes in the accuracy. Indeed, after reaching
the 100th epoch, a decrease in accuracy became
apparent; perhaps because of overtraining. The
dataset was allocated 80% for training and 20%
for testing. The data was not age-adjusted  or
age-standardized.
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Table 1: Some images from OASIS Dataset (54)

Very Mild AD Mild AD Mild AD Non-AD Very Mild AD

Non-AD Very Mild AD Non-AD Non-AD Non-AD

Very Mild AD Very Mild AD Mild AD Very Mild AD Mild AD

Table 2: Image counts of the brain MRI dataset

Dataset Non-AD Very mild AD Mild AD Moderate AD Total

Train 2566 1791 715 48 5120

Test 634 449 181 16 1280

Total 3200 2240 896 64 6400

Model Performance Metrics
Performance  metrics  of  the  model  were
calculated  to  ascertain  the  reliability  of  the
study. To measure the performance metrics, six
methods were used: Accuracy, Recall
(equation  1), Precision (equation 2), f-1 score

(equation  3),  and  specificity  (equation  4)  (55,
56). An illustrative example of the “True Class”
confusion matrix (Table 3) was prepared. There
are two distinct classes, denoted P and N. The
predicted output of these classes was either true
or false.
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Table 3: True Class

Positive (P) Negative (N)
True (T) True Positive (TP) False Positive (FP)
False (F) False Negative (FN) True Negative (TN)

Accuracy=
TP+TN

TP+TN+FP+FN
Equation 1

Recall=
TP

TP+FN
Equation 2

Precision=
TP

TP+FP
Equation 3

F1−score=
2 xPrecisionxRecall
Precision+Recall

Equation 4

Specificity=
TN

FP+TN
Equation 5

Matthew ' sCorrelationCoefficient=
(TPx TN )− (FPx FN )

√(TP+FP ) (TP+FN ) (TN+FP ) (TN+FN )
Equation 6

A confusion matrix is a tool for evaluating the
performance  of  multi-class  classification
models, such as a 3x3 square (Table 4). In this
matrix type, the model's predicted and true

labels  are  compared  between  all  classes  to
determine  the  number  of  accurate  and
inaccurate predictions for each.

Table 4: Confusion Matrix for a Multi-class Classification Test

True Class
Predicted Y Z K

Y TPY EZY EKY

Z EYZ TPZ EKZ

K EYK EZK TPK
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The TPY and TPZ and TPK in the Table 4 shows
the  number  of  true  positives  in  classes  Y,  Z
and K respectively (55, 56). EYK, on the other
hand, is in the Y class and shows the number of
those  misclassified  as  K  class  (55,  56).
Furthermore,  EZY is  in the Z class,  indicating
the  number  of  those  misclassified  as  Y class
(55, 56). Similarly,  EKY shows the number of
those misclassified as Y class in the K class.
The number of false negatives for class Y is the
sum of EYZ and EYK (55, 56). The number of
false negatives for class Z is the sum of EZY and
EZK (55, 56). The number of false negatives for
class K is the sum of EKY and EKZ (55, 56). The
number of false positives for class Y is the sum
of EZY and EKY (55, 56). The number of false
positives for class Z is the sum of EYZ and EKZ

(55,  56).  The  number  of  false  positives  for
class K is the sum of EYK and EZK (55, 56). An

important  example  of  a  true  negative  can  be
given from Y. The number of true negatives for
class  Y equals  the total  number  of  TPZ,  EKZ,
EZK,  and  TPK (55,  56).  The  number  of  true
negatives  for  class  Z  is  equal  to  the  total
number of TPK, TPY, EYK, EZK (55, 56). Lastly,
the  number  of  true  negatives  for  class  K  is
equal to the total number of TPY, TPZ, EYZ, EYZ

(55, 56).

Results and Discussion
DenseNet  121,  EfficientNetB-7,  ResNet-50,
ResNet-18,  and  AlexNet  were  used  and
evaluated  in  this  section.  In  addition,  the
classification  accuracy  (equation  1),  recall
(equation 2), precision (equation 3), f-1 score
(equation  4),  and  specificity  (equation  5)
results  derived from the proposed models are
reported in Table 5.

Table 5: Model Performance Metrics. Mild, moderate, non-AD and very mild AD are arranged 
from top to bottom for each model.
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AlexNet  has  been  used  as  one  of  the  deep
learning  models,  and  it  received  the  second
lowest specificity when applied to non-AD. A
high-  specificity  test  accurately  identifies
unaffected  individuals  at  a  low false-positive
rate. This makes it  particularly useful when a
false- positive result could lead to unnecessary
treatment or undue anxiety. However, a high-
specificity  test  may  miss  some  true  positive
cases,  so  it  is  important  to  consider  both
sensitivity and specificity when evaluating the
performance of a diagnostic test. The Matthews
Correlation Coefficient (MCC) is a quantitative
measure  of  the  efficiency  of  binary
classifications (57). It considers true positives,
true  negatives,  false  positives,  and  false
negatives and is bounded by the range -1 to +1.
An  MCC  score  of  +1  indicates  a  perfect
prediction,  0  corresponds  to  a  random
prediction,  while  -1  illustrates  total
disagreement  between predicted and observed
results (57). AlexNet demonstrated an MCC of
0.538, 0.587, 0.530,  and  0.463  for  AD,
moderate  AD,  non-AD  and  very  mild  AD,
respectively.

EfficientNetB-7  (Table  5),  one  of  the  CNN
models,  performed  poorly  in  many  respects.
EfficientNetB-7  demonstrated  an  MCC  of
0.03690, -0.01756, 0.00258, and -0.07622
for mild, moderate, non-AD and very mild AD,
respectively.  A  negative  MCC  indicates  that
the  classifier  performs  inferior  to  random
guessing  and  the  predictions  are  unreliable.
This  may  stem  from  the  classifier
systematically  making  unidirectional  errors
when making predictions.

ResNet-50, deep convolutional neural network
architecture,  achieved  the  highest  overall
accuracy. The ResNet-50 model demonstrated
an MCC of 0.9357, 0.8643, 0.9177 and 0.9223
for mild, moderate, non-AD and very mild AD
respectively.  The  ResNet-50  model  was
effective in accurately detecting AD.

ResNet-18,  a  deep  convolutional  neural
network  architecture,  attained  one  of  the
highest  overall  accuracy ratings.  Nonetheless,
accuracy rose again to 96.34% when applied on
very mild AD. The ResNet-18 model achieved
an MCC of 0.8544, 0.8410, 0.8150 and 0.8340
for mild, moderate, non-AD and very mild AD
respectively.

DenseNet-121,  a  deep  convolutional  neural
network  architecture,  achieved  the  second-
highest overall accuracy ratings, with an MCC
of 0.8718, 0.7523, 0.9280 and 0.8339 for mild,
moderate,  non-AD  and  very  mild  AD
respectively.

Specificity refers to correctly identifying those
without  the  disease,  in  other  words,  the  true
negative  rate.  A  high  specificity  means  that
fewer false positives exist for people who don't
have  the  disease  but  test  positive.  This  is
considered  a  good  sign  because  it  reduces
unnecessary  treatments.  In  all  models,
moderate  AD  had  a  high  specificity,  which
means  that  all  models  accurately  identified
samples  that  did  not  belong  to  the  moderate
AD  class.  Sensitivity  means  correctly
identifying  those  with the  disease;  i.e.  a  true
positive rate. When this rate is low, the models
miss  a  number  of  individuals  who  have  the
disease, which  is  a  false  negative.  This
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situation  can  lead  to  individuals  who  are
actually  sick might  not  receive  the  necessary
treatment.

During times of a disease outbreak such as the
COVID-19  pandemic,  it  becomes  crucial  to
detect  and  identify  as  many  infected
individuals  as  possible  in  order  to  prevent
further  spread.  This  means that  having a  test
with high sensitivity is preferable. A sensitive
test  can  accurately  identify  the  majority  of
infected  individuals  minimizing  the  risk  of
missing  any  infections.  While  false  positives
might  inconvenience  those  who  receive
misdiagnoses, it is important to prioritize
health and avoid the consequences of missing
infected  cases.  On  the  other  hand,  when  it
comes  to  diagnosing conditions  like  cancer,
having a test  with  high  specificity  is  often
desirable so as to minimize false positives and
reduce instances where healthy individuals are
wrongly  diagnosed  with  the  disease.  False
positives  in  cancer  diagnosis  can  lead  to
treatments that may potentially harm patients,
increase anxiety levels, and incur unnecessary
healthcare costs. However, striking a balance is
crucial so as not

to overlook true cancer cases. When diagnosing
AD, it is crucial to consider both sensitivity and
specificity.  Having  a  test  with  sensitivity  is
valuable as it can accurately detect the majority
of  individuals  with  Alzheimer's,  reducing  the
risk of overlooking cases. This,  enables more
patients  to  receive  treatment.  Given  that  AD
often shares symptoms with forms of dementia,
a  test  with  specificity  proves  helpful  in
distinguishing  AD  from  other  conditions.
Enhancing the specificity of AD tests can help
improve  the  overall  reliability  of  AD
classification,  contributing  to  better  research
outcomes.

Additionally,  the  analysis  of  the  model
performance metrics is facilitated by the use of
a  confusion  matrix  (Tables  6-10).  Confusion
matrices  are  important  because  they  help  in
performance  evaluation,  error  analysis,  and
also  imbalance  class  detection.  When  the
classes  are  imbalanced  in  the  dataset,  the
number  of  images/samples  in  each  class  can
differ. Hence, examining the distribution of TP,
TN,  FP,  and  FN across  classes  can  help  with
potential issues related to imbalanced data.

Table 6: AlexNet Confusion Matrix

Mild AD Moderate AD Non-AD Very mild AD
Mild AD 93 1 11 76

Moderate AD 4 6 0 6
Non-AD 15 1 454 164

Very mild AD 22 0 77 350

This confusion matrix shows that AlexNet was
accurate  in  classifying  very  mild  AD.
However,  it  could  not  classify  a  higher
percentage of the cases in moderate AD. This

might  be  related  to  the  number  of  images
because the amount of training and test data in
the  moderate  AD  category  was  significantly
lower in comparison to the other classes.
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Table 7: EfficientNetB-7 Confusion Matrix

Mild AD Moderate AD Non-AD Very mild AD

Mild AD 18 22 115 26
Moderate AD 4 1 4 7

Non-AD 33 61 380 160
Very mild AD 44 59 271 75

As  can  be  seen  from  the  confusion  matrix,
EfficientNetB-7  has  a  lower  accuracy  than
random guessing for mild, moderate, and very

mild AD. The model was not compatible  with
EfficientNetB-7.

Table 8: ResNet-50 Confusion Matrix

Mild AD Moderate AD Non-AD Very mild AD
Mild AD 166 0 12 3

Moderate AD 0 15 0 1
Non-AD 0 0 629 5

Very mild AD 5 0 33 411

ResNet-50 was the  most  successful  CNN for
the model. It demonstrated high accuracy in the
non-AD classification  category.  To provide a
more comprehensive  evaluation  of  the

classification  accuracy  for  moderate  AD,  an
expanded set of training and testing data may be
required.

Table 9: ResNet-18 Confusion Matrix

Mild AD Moderate AD Non-AD Very mild AD
Mild AD 149 0 13 19

Moderate AD 0 12 2 2
Non-AD 5 0 592 37

Very mild AD 8 0 62 379

While ResNet-18 did not achieve the same 
level of accuracy as ResNet-50, it still emerged

as the third most effective model in this study.
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Table 10: DenseNet-121 Confusion Matrix

Mild AD Moderate AD Non-AD Very mild AD

Mild AD 157 0 15 9
Moderate AD 4 12 0 0

Non-AD 2 0 618 14
Very mild AD 7 0 64 378

DenseNet-121  ranked  as  the  second  most
accurate  convolutional  neural  network in  this
study.  While  it  demonstrated  significant
success in classifying non-AD cases,  it  under
performed  in  accurately  classifying  moderate
AD.

AlexNet achieved accuracies of 51.3%, 37.5%,
71.6% and 77.95% in mild, moderate, non-AD
and  very  mild  AD  detection  respectively.
EfficientNetB-7 achieved accuracies of 9.95%,
6.25%, 59.94% and 16.70% in mild, moderate,
non-AD  and  very  mild  AD  detection
respectively. ResNet-50 achieved accuracies of
91.71%, 93.75%, 99.21% and 91.53% in mild,
moderate, non-AD and very mild AD detection
respectively. ResNet-18 achieved accuracies of
82.32%, 75.00%, 93.37% and 84.41% in mild,
moderate, non-AD and very mild AD detection
respectively.  DenseNet-121  achieved
accuracies of 86.74%, 75.00%, 97.47% and

84.19% in mild,  moderate,  non-AD and very
mild  AD  detection  respectively.  The  highest
and lowest accuracies for mild AD were found
in the ResNet-50 (91.7%) and EfficientNetB-7
(9.95%) models respectively.  The highest and
lowest accuracies for moderate AD were found
in the ResNet-50 (93.75%) and EfficientNetB-
7 (6.25%) models respectively. The highest and
lowest  accuracies  for  non-AD were  found  in
ResNet-50 (99.21%), and in the EfficientNetB-
7  (59.94%)  models  respectively.  The  highest
and lowest  accuracies  in  very mild  AD were
found  in  the  ResNet-50  (91.53%)  and  in  the
EfficientNetB-7 (16.70%) models respectively.
Although  in  overall  accuracy,  DenseNet-121
was  more  effective  than  ResNet-18,  in  very
mild  AD,  ResNet-18  was  found  to  be  more
effective  than  DenseNet-121.  Moreover,
ResNet-18  and  DenseNet-121  were  equally
effective for detecting moderate AD.
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Table 11: Comparison of similar studies in the literature

Study (reference) Accuracy (%) Data quantity

This paper 95.1 6400
Gupta et. al. (25) 94.7 4315

Ozic et. al. (26) 92.8 140
Liu et. al. (33) 45.3 311

Islam and Zhang (37) 73.5 416
Subramonium et. al. (38) 99.7 6400

Ghazal et. al. (39) 91.7 6400

Compared to other studies, the dataset used in
this study appears to contain more images. On
the basis of the classification performance, this
study proposes an acceptable model.

Conclusion
Deep learning architectures were employed for
AD  detection  using  MR  images  from  the
OASIS dataset. Through experimentation with
ResNet-18,  DenseNet-121,  AlexNet,
EfficientNetB-7,  and ResNet-50 architectures,
the  study  demonstrated  the  critical  role  of
image  classification.  The  performance  of  the
models  was  evaluated  using  several  metrics,
including accuracy, recall, precision, f-1 score,
specificity,  and  Matthew’s correlation
coefficient.  AlexNet  achieved  an  average
precision  of  59.75%,  making  it  the  second
worst. Its average recall and sensitivity scores
were  also  second  lowest  at  71.75%.  The  f-1
score and average specificity were 61.25% and
87.75%  respectively.  EfficientNetB-7
performed  the  worst  in  all  of  the  metrics.  It
achieved an average  precision  of  23.30%. Its
average recall and sensitivity scores were also
second lowest at 23.92%. The f-1 score and

the average specificity were 22.33% and 74.50%
respectively. This CNN model failed to
accuretely  detect  or  classify  AD.  The
performance metrics of ResNet-50 were the best
among all the measurements. It achieved a mean
precision  of  89.50%  and  a  mean  recall  and
sensitivity mean of 97.00%. The F-1 metric and
average  specificity  were  92.75% and  98.25%
respectively.  In  conclusion,  this  CNN  model
accurately  classified all  categories  of AD. The
performance metrics of ResNet-18 were one of
the  best  among  all  the  measurements.  It
achieved  a  mean  precision  of  82.75%  and  a
mean recall and sensitivity score of 91.75%. The
f-1 metric and average specificity were 86.75%
and  97.00%  respectively.  Finally,  the
performance  of  DenseNet-121  proved  to  be
exemplary  when  compared  with  the  other
metrics.  It  had a mean precision of 81.25%, a
mean recall and sensitivity score of 93.25%, an
f-1  metric  rating  of  86.00%,  and  an  average
specificity score of 97.25%.

In  subsequent  studies,  the features obtained
from the  architectures can be evaluated in
classical classifiers. Additionally, Principal 
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Component Analysis (PCA), Independent
Component  Analysis (ICA), and Locally
Linear Embedding (LLE) can be employed for
AD  classification  tasks.  Moreover,  using
feature extraction methodologies such as back-
propagation neural networks can be helpful for
AD detection. Another excellent method could
involve  mapping  the  differences  occurring  in
grey  matter and white matter regions using
3D T1- weighted MRI with the Voxel-Based
Morphometry.

While this study – and others – compared the
performance  of  different  CNNs,  there  is  a
paucity of research to determine  why  specific
neural networks perform better than others for
specific  applications.  The  mechanisms  behind
the  mere  application  of  off-the-shelf  CNNs
need  to  be  studied  so  that  networks  with
specific architectures can be designed that are
better  suited  for  complex,  esoteric  or
unconventional applications.
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