
Technical note

A python code algorithm for balancing chemical equations as a system of simultaneous linear
equations using matrix algebra.

Chacon D1, Apte S2

Submitted: May 21, 2023
Accepted: May 21, 2023

Abstract
The trial-and-error method of balancing most chemical equations usually works well if certain
heuristic rules are followed. These rules are; to balance individual reactant or product element(s)
last and to preferably obtain an even number of atoms by doubling the moles of select reactant(s)
or product(s). All chemical equations can be represented as systems of simultaneous linear
equations; one equation for each element taking part in the reaction. Using matrix algebra hence
provides a universal method to solve any chemical equation. The advantage of such an approach
is that it is amenable to algorithmic compression, such that the teaching of the ‘relatively non-
value added’ content of ‘how to balance chemical equations’, can instead be replaced or
superseded by knowledge creating chemical concepts, such as, predicting the products of a
chemical reaction, stoichiometric calculations, chemical equilibrium and reaction mechanisms.
We present such a universal method to solve any chemical equation in this manuscript, and apply
it to several examples of various types and complexities of chemical reactions to demonstrate its
universality. The accompanying algorithm, written in python, is presented. The algorithm is also
posted on Github.

Keywords
Balancing chemical equations, Matrix algebra, Simultaneous linear equations, Universal method,
Coefficient, Element, Algorithm, Python, Chemical equations

__
1Diego Chacon, Harmony Science Academy, Euless, TX 76040,
DiCh5055@student.harmonytx.org
2Corresponding author: Shireesh Apte, Harmony Science Academy, Euless, TX 76040,
shireeshpapte@gmail.com

Journal of High School Science, 7(2), 2023

Technical note

Introduction
The internet is replete with websites that
balance input chemical equations (1-5). Many
of these websites do not explain the algorithm
or method used to balance the input equation.
The Github website (https://github.com/)
contains several algorithms that balance
chemical equations. However, some of these do
not list or explicitly state the underlying logic
(6, 7), do not support some of the reaction
types (8), or only support very specific types of
reactions (9). A rudimentary manuscript
describing the process of matrix algebra to
balance simple chemical equations dates back
nearly a decade (10).

It therefore appears that there is a significant
lack of information on the methodology used to
balance chemical equations. Furthermore, there
is a need for a universal algorithm which can
be used to balance any type of input chemical
equation; without being limited to certain
categories of chemical reactions. There is also
a need to complement the Github hosted
equation solver with its peer reviewed
counterpart in the public domain so that users
are able to completely understand the logic
behind the algorithm without being relegated to
deciphering cryptic instructions at the
README page of the Github hosted
algorithm.

Methods
Before starting to code, a library called “re”
(regular expression), was imported in line 1 of
the code from Python’s library of modules,
which checked for matches in different sets of
letter combinations. This was necessary for the
code to know what elements or compounds are
input. A function called “findElements' ' was
then created, whose purpose was to find and

save the different combinations of uppercase
and lowercase letters (or just uppercase letters)
from the user's input. Another function called
“elementsAndNumbers” was created, which
was used to check if any of the uppercase and
lowercase letters, (which are the input
compounds), had parentheses. If the function
detected any parenthesis, it saved the string
inside of the parenthesis. Once all these
functions executed, the code inserted the data
into a matrix. The matrix was then imported
from the matrix Python module that was added
to the code in line 2, and - thanks to its built-in
function – it could store the data provided in
rows and columns. This module then allowed
for the creation of several matrices to store the
input information. A function called “lcm”
(Least Common Multiple), was then imported
which calculated the least common multiples of
the previously created matrices . Once this is
done, two different lists were created in the
program lines 4-5; one termed “elementList”
and the other termed “elementMatrix”. These
two lists stored the information input by the
user for use in the algorithm.

The code was then instructed to print
statements that provided instructions on how to
use the program (program lines 7-11). Once
this was done, two different input statements
were created, allowing the user to enter the
reactants of the formula and its products
respectively. These input statements saved the
user input information in two variables called
“reactants” and “products”. After these
variables recorded the user’s responses, a built-
in Python function called “replace” was used to
remove any empty spaces the user may have
left in their input (program lines 13-14). Once
the program removed the empty spaces, it
saved the new version of the input in the

Journal of High School Science, 7(2), 2023

Technical note

variables called “reactants” and “inputs”.
Thereafter, the first function was created and
named as “addToMatrix”. This function
worked in tandem with 4 other variables called
“element”,“index”, count, and “side”, which
were variables that held and managed the
information that was input to the function
(program lines 16-26).

Subsequently, the code for the function itself
was written. At the start of the function, an ‘if’
statement in the code checked to determine
whether all the variables were present. If not,
an ‘else’ statement substituted them as zeros if
determined to be empty. This function then
saved the current information provided into the
list “elementMatrix'' and populated it with the
same number of zeroes as the compounds
provided. In other words, the function created a
type of skeleton for the compounds provided
wherein the function could update the chemical
formula’s values. Subsequently, another
statement in the code checked for elements that
were not encountered before, and, upon finding
one, it created a new row for the lists created
by the function “addToMatrix”, mentioned
previously, and populated the skeleton that the
program created with zeroes, to symbolize the
emptiness of the skeleton. A predefined
function called “index” was then used to locate
the empty column(s) from the skeleton that the
functions created whose value needed to be
changed/updated according to the balancing
calculations that the program was in the
process of calculating. Thereafter, a second
function called “FindElements” was created,
which used the information saved from the
previous functions and input it into the function
“FindElements” so that it could use this
information and start checking it (program
lines 28-38). This function executed a ‘while’

loop that continuously checked each element.
Inside this loop, the program checked for two
conditions: 1] if the length of the segment
provided was greater than zero and 2] if it was
greater than zero, it checked if the subsequent
segment was non-zero. If these two conditions
were met, the loop called the previous function
to add that element to a matrix. Another
function called “compound decipher” was then
created (program lines 41-50). This function
separated the parenthesis and brackets from the
input equation using the “import re'' library
imported earlier. After this operation was
completed, a “for” loop was created that
continuously looped through each segment for
however many segments there were and
removed any extra parenthesis or brackets.
Finally, this function saved the “segment”,
“index”, “multiplier” and side values, which
were the names of the variables that the
program saved the calculated values in. After
all these functions were defined and calculated,
the program had all the data it required for
solving the matrices generated by the previous
functions.

The Python library “sympy import matrix, lcm”
that was imported to the program earlier was
used to calculate the result of the matrices. All
the previous data was transferred to a specific
matrix that Sympy could understand. A
function from Sympy called “transpose” was
then used to enable the program to save each
column as an element. The program then
calculated the nullspace of each column and
generated the coefficients for the formula. The
program then determined the lowest common
multiple of the coefficients using “lcm” from
the sympy library. The final solution was saved
in the variable termed “solution”. Lastly, the
code displayed the numbers from this solution

Journal of High School Science, 7(2), 2023

Technical note

as the corresponding coefficients of the input
formula and displayed the final balanced
equation on the screen.

The code is included as an appendix. It is also
available on Github at
https://github.com/diegoAchacong/python_che
mical_equation_balancer/blob/main/
PythonChemEuqationBalancer.py

Results and discussion
The following represent examples of equations
that were balanced using the algorithm. A
variety of reaction types are included such as

combustion, decomposition, disproportionation
replacement, ReDox, acid-base, complexation
and synthesis.

1. Unbalanced equation: C4H10 + O2 → CO2 + H2O

Balanced equation: 2 C4H10 + 13 O2 →8 CO2 +10 H2O

2. Unbalanced equation: (NH4)2Cr2O7 → N2 + Cr2O3 + H2O

Balanced equation: (NH4)2Cr2O7 → N2 + Cr2O3 + 4 H2O

3. Unbalanced equation: C57H110O6 + O2 → CO2 + H2O

Balanced equation: 2 C57H110O6 + 163 O2 → 114 CO2 + 110 H2O

4. Unbalanced equation: KNO3 + C12H22O11 → N2 + CO2 + H2O + K2CO3

Balanced equation: 48 KNO3 + 5 C12H22O11 → 24 N2 + 36 CO2 + 55 H2O + 24 K2CO3

5. Unbalanced equation: Cu2S + HNO3 → Cu(NO3)2 + CuSO4 + NO2 + H2O

Balanced equation: 1 Cu2S + 12 HNO3 → 1 Cu(NO3)2 + 1 CuSO4 + 10 NO2 + 6 H2O

6. Unbalanced equation: K4[Fe(SCN)6] + K2Cr2O7 + H2SO4 → Fe2(SO4)3 + Cr2(SO4)3 + CO2 +

H2O + K2SO4 + KNO3

Balanced equation: 6 K4[Fe(SCN)6] + 97 K2Cr2O7 + 355 H2SO4 -> 3 Fe2(SO4)3 + 97 Cr2(SO4)3 +
36 CO2 + 355 H2O + 91 K2SO4 + 36 KNO3

7. Unbalanced equation: Na2S2O4 + NaOH → Na2SO3 + Na2S + H2O

Balanced equation: 3 Na2S2O4 + 6 NaOH → 5 Na2SO3 + 1 Na2S + 3 H2O

8. Unbalanced equation: C6H8O7 + NaHCO3 → Na3C6H6O7 + CO2 + H2O

Balanced equation: 19 C6H8O7 + 54 NaHCO3 → 18 Na3C6H6O7 + 60 CO2 + 49 H2O

Journal of High School Science, 7(2), 2023

https://github.com/diegoAchacong/python_chemical_equation_balancer/blob/main/PythonChemEuqationBalancer.py
https://github.com/diegoAchacong/python_chemical_equation_balancer/blob/main/PythonChemEuqationBalancer.py
https://github.com/diegoAchacong/python_chemical_equation_balancer/blob/main/PythonChemEuqationBalancer.py

Technical note

9. Unbalanced equation: P4O10 + H2O → H3PO4

Balanced equation: 1 P4O10 + 6 H2O → 4 H3PO4

10. Unbalanced equation: Ag + + S2O3 -2 → [Ag(S2O3)2] -3

Balanced equation: 1 Ag + + 2 S2O3 -2 → 1 [Ag(S2O3)2] -3

Figures 1, 2 and the supplementary file
illustrate the process used to balance equation 6
above, as an example. The supplementary .pdf
file contains the step-by-step matrix procedure
used to solve for the coefficients in the
equation. The matrix calculator website,
http://www.matrixcalc.org was used to solve

the matrix obtained from the system of
simultaneous linear equations generated for
equation 6. Table 1 presents the element
specific equations. The python code that is
presented in this manuscript does this
calculation as part of the code itself; in turn
imported from the matrix library.

Figure 1: Input of simultaneous linear equations for equation 6 into the matrixcalc.org website. The coefficient
variables X1 through X9 originate from those assigned to the unbalanced chemical equation: x1 K4[Fe(SCN)6] + x2
K2Cr2O7 + x3 H2SO4 → x4 Fe2(SO4)3 + x5 Cr2(SO4)3 + x6 CO2 + x7 H2O + x8 K2SO4 + x9 KNO3

Journal of High School Science, 7(2), 2023

http://www.matrixcalc.org/

Technical note

Figure 2: Answers generated from solving the matrix for equation 6 from the matrixcalc.org website.

Table 1: Element specific equations for the unbalanced chemical equation from the coefficients
in Figure 1

Element Equation

K 4x1 + 2x2 = 2x8 + 1x9

Fe 1x1 = 2x4

S 6x1 + 1x3 = 3x4 + 3x5 + 1x8

C 6x1 = 1x6

N 6x1 = 1x9

Cr 2x2 = 2x5

O 7x2 + 4x3 = 12x4 + 12x5 + 2x6 + 1x7 + 4x8 + 3x9

H 2x3 = 2x7

Conclusion
Chemical reactions can be balanced when the
coefficients of all the elements constituting that
reaction are treated as variables in a set of
simultaneous linear equations. A program was

written in Python to solve the matrix created
from these simultaneous equations. The code
could balance any type of reaction and
therefore is unique in its universal application.

References

1. https://www.webqc.org/balance.php

Journal of High School Science, 7(2), 2023

Technical note

2. https://planetcalc.com/6145/

3. https://byjus.com/chemical-equation-calculator/

4. https://calculator-online.net/chemical-equation-balancer-calculator/

5. https://www.chemicalaid.com/tools/equationbalancer.php?hl=en

6. https://gist.github.com/CoolOppo/c52d0cef39fcc051c7c7

7. https://github.com/vano-maisuradze/chemical-equation-balancer

8. https://github.com/h-hg/ChemicalEquationBalancer

9. https://github.com/djinnome/rxneqn

10. Gabriel CI, Onwuka GI, Balancing of chemical equations using matrix algebra, J. Nat. Sci.
Res., 5(5), 2015.

Appendix: Python code used to balance chemical equations

import re
from sympy import Matrix, lcm

elementList=[]
elementMatrix=[]

print("please input your reactants, this is case sensitive")
print("your input should look like: H2O+Ag3(Fe3O)4")
reactants=input("Reactants: ")
print("please input your products, this is case sensitive")
products=input("Products: ")

reactants=reactants.replace(' ', '').split("+")
products=products.replace(' ', '').split("+")

def addToMatrix(element, index, count, side):
 if(index == len(elementMatrix)):
 elementMatrix.append([])
 for x in elementList:
 elementMatrix[index].append(0)

Journal of High School Science, 7(2), 2023

Technical note

 if(element not in elementList):
 elementList.append(element)
 for i in range(len(elementMatrix)):
 elementMatrix[i].append(0)
 column=elementList.index(element)
 elementMatrix[index][column]+=count*side

def findElements(segment,index, multiplier, side):
 elementsAndNumbers=re.split('([A-Z][a-z]?)',segment)
 i=0
 while(i<len(elementsAndNumbers)-1):#last element always blank
 i+=1
 if(len(elementsAndNumbers[i])>0):
 if(elementsAndNumbers[i+1].isdigit()):
 count=int(elementsAndNumbers[i+1])*multiplier
 addToMatrix(elementsAndNumbers[i], index, count, side)
 i+=1
 else:
 addToMatrix(elementsAndNumbers[i], index, multiplier, side)

def compoundDecipher(compound, index, side):
 segments=re.split('(\([A-Za-z0-9]*\)[0-9]*)',compound)
 for segment in segments:
 if segment.startswith("("):
 segment=re.split('\)([0-9]*)',segment)
 multiplier=int(segment[1])
 segment=segment[0][1:]
 else:
 multiplier=1
 findElements(re.sub('(\[|\])', '', segment), index, multiplier, side)

for i in range(len(reactants)):
 compoundDecipher(reactants[i],i,1)

for i in range(len(products)):
 compoundDecipher(products[i],i+len(reactants),-1)

elementMatrix = Matrix(elementMatrix)
elementMatrix = elementMatrix.transpose()
solution=elementMatrix.nullspace()[0]
multiple = lcm([val.q for val in solution])
solution = multiple*solution
coEffi=solution.tolist()
output=""

Journal of High School Science, 7(2), 2023

Technical note

for i in range(len(reactants)):
 output+=str(coEffi[i][0])+reactants[i]
 if i<len(reactants)-1:
 output+=" + "
output+=" -> "

for i in range(len(products)):
 output+=str(coEffi[i+len(reactants)][0])+products[i]
 if i<len(products)-1:
 output+=" + "
print(output)

Journal of High School Science, 7(2), 2023

