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The paper requires significant revisions before it can be considered for publication. The following
issues should be addressed:

Use of simulated data:

The study relies exclusively on toy simulation data from XENONIT rather than full detector
simulations and calibration data. While toy simulations are useful for method development and
feasibility studies, they are not necessarily representative of real WIMP data. Machine learning
models trained only on toy WIMP/background events risk learning non-physical features, leading to
poor generalization, false positives, or missed signals. This limitation makes performance metrics
such as F1 score less meaningful in terms of physical interpretation. Although the author
acknowledges this in the limitations section, further effort should be made to validate the approach
with more realistic simulation or calibration data.

Insufficient references:

The manuscript lacks sufficient citations to relevant prior work. The author should include
references to existing literature, both on WIMP detection strategies and on machine learning
applications in this domain.

XENONIT context:

In the XENONIT experiment, the ratio of scintillation to ionization is already used to distinguish
nuclear recoils (expected from WIMPs) from electronic recoils (backgrounds). The paper should
clarify why additional machine learning methods are needed. Is the signal-to-noise ratio so low that
conventional techniques are insufficient?

Application of ML methods:

The current version of the paper emphasizes comparing machine learning methods rather than
demonstrating their actual utility for WIMP identification. The application of ML should be
motivated by clear physics goals, not just methodological exploration.

Choice of models:

The paper should provide stronger justification for the choice of models. For instance, if XGBoost
produces comparable results to ensembles, why not rely on the simpler model?

Novelty:

Since other studies have already explored the use of ML in this context, the author should clarify
what is novel about the present contribution.

Background events:

The focus on radiogenic neutrons as the sole background is a major limitation. WIMP searches must
contend with multiple background sources, and limiting the study to a single one reduces its
practical impact.

Theoretical and experimental context:

The paper would benefit from a short background on WIMPs, noting that none have yet been
detected, and a discussion of what kind of signals are expected from WIMP interactions. Based on
this, the author should simulate events in the presence of realistic background noise to test whether
ML models can truly distinguish between signal and background.

Research background score:

The justification for a research background score of 0.8 is unclear and should be elaborated.
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“Use of simulated data:

The study relies exclusively on toy simulation data from XENONIT rather than full detector
simulations and calibration data. While toy simulations are useful for method development and
feasibility studies, they are not necessarily representative of real WIMP data. Machine learning
models trained only on toy WIMP/background events risk learning non-physical features, leading to
poor generalization, false positives, or missed signals. This limitation makes performance metrics
such as F1 score less meaningful in terms of physical interpretation. Although the author
acknowledges this in the limitations section, further effort should be made to validate the approach
with more realistic simulation or calibration data.”

Addressed in:
° Abstract — “The dataset ... is generated based on the XENONIT findings.”
° 3.1 Data generation — cloning/using Blueice/Laidbax and SearchForDarkMatter; explicit

validation strategy (cross-backend comparison, folding geometry, light-collection maps, electron
lifetime).

° 3.3 Algorithms / calibration — calibration diagnostics, CalibratedClassifierCV, reliability
plots and Brier scores.

° 4 Results — cross-backend performance and domain-shift quantification (FastSim<«>Blueice
numbers; Figure 3).

° 5.3.1 Limitations — explicit statement of the simulation-to-reality gap and suggestion for
more backends / domain-adaptation.

° 6 Conclusion — “measured simulation-to-reality gap of roughly 4-5% F1”* and “further

calibration ... necessary.”

“Insufficient references:

The manuscript lacks sufficient citations to relevant prior work. The author should include
references to existing literature, both on WIMP detection strategies and on machine learning
applications in this domain.”

Addressed in:

° Inline citations throughout Introduction (e.g., (2,3,6,13,16,18,24) etc.).

° 3.1 Data generation — cites XENONI1T/Blueice/Laidbax (2,3,19).

° Intro ML discussion / novelty paragraph — cites prior ML work (5,12,14,20,23).

° References section (7.) — full bibliography listing the cited works (Akerib et al., Aprile et
al., Balazs et al., Guest et al., Renner et al., Priel et al., etc.).

“XENONIT context:

In the XENONIT experiment, the ratio of scintillation to ionization is already used to distinguish
nuclear recoils (expected from WIMPs) from electronic recoils (backgrounds). The paper should
clarify why additional machine learning methods are needed. Is the signal-to-noise ratio so low that
conventional techniques are insufficient?”

Addressed in:

° Introduction — explicit explanation: “The statistical methods of the XENONIT experiment
rely on ... S1/S2 ... However, this method performs well only for bulk background rejection and
struggles with specific cases.” (follows with examples: neutron-induced NRs, surface-background
distortions).

° 3.1/3.2 —use of S1, S2, corrected S1/S2 and engineered features (log_s1, log energy)
shows ML is built on those observables.

° 5.1 Discussion & Conclusion — argues ML complements traditional methods and targets
subtle event classes (neutrons, surface effects).



“Application of ML methods:

The current version of the paper emphasizes comparing machine learning methods rather than
demonstrating their actual utility for WIMP identification. The application of ML should be
motivated by clear physics goals, not just methodological exploration.”

Addressed in:

° Introduction — motivation that ML can capture multi-dimensional correlations and identify
subtle patterns missed by cut-based S1/S2.

° 2.1 Hypothesis — physics-centered goals and performance baselines tied to utility (robust
event classification, controlled degradation under systematics).

° 3.4 Ensemble & 4 Results — operating points, per-class metrics, and calibrated probabilities
reported (practical outputs for event selection).

° 5.1 Discussion & 6 Conclusion — interprets results in physics terms (signal recovery,
detector-sensitivity identification, probability-based event selection).

“Choice of models:
The paper should provide stronger justification for the choice of models. For instance, if XGBoost
produces comparable results to ensembles, why not rely on the simpler model?”

Addressed in:

° Introduction (ML paragraphs) — role of Random Forest (feature ranking/interpretability),
XGBoost (nonlinear discrimination, sample efficiency), SVM (margin-based bias) and rationale for
combining.

° 3.3 Algorithms — hyperparameter grids and intended roles (RF as diagnostic; XGBoost for
high performance; SVM for complementary bias).

° 3.4 Ensemble — soft-voting, comparison to hard-voting and stacking described.

° 4 Results & 5.2 Comparison — concrete performance comparison (Table 1, Figure 5) and
statement that XGBoost is best single model but ensemble yields top aggregate metrics.

“Novelty:
Since other studies have already explored the use of ML in this context, the author should clarify
what is novel about the present contribution.”

Addressed in:

° Introduction — explicit novelty paragraph — “novel in its multi-observable focus and
interpretability pipeline” with two concrete claims: (1) analyses across four background types vs
typical ER/NR binary focus, (2) emphasis on Random Forest feature ranking + SHAP to mitigate
simulation-specific artifacts.

° 3.1-3.4 and Conclusion — repeated emphasis on transferability, cross-backend tests, and
interpretability pipeline supporting the novelty claim.

“Background events:

The focus on radiogenic neutrons as the sole background is a major limitation. WIMP searches must
contend with multiple background sources, and limiting the study to a single one reduces its
practical impact.”

Addressed in:

° Abstract — lists cosmogenic neutrons, surface events, electronic recoils, radiogenic
neutrons.

° Introduction — explains each background type and why they mimic WIMPs.

° 3.1 Data generation — explicit event list and dataset composition (50k WIMP, 50k
background; 12.5k each background type).



° 4 Results — 5x5 confusion matrix and per-class metrics (Table 2) showing treatment of
multiple backgrounds.

° 5.3.2 Class-Specific Weaknesses — notes surface events are hardest and proposes future
remedies.

“Theoretical and experimental context:

The paper would benefit from a short background on WIMPs, noting that none have yet been
detected, and a discussion of what kind of signals are expected from WIMP interactions. Based on
this, the author should simulate events in the presence of realistic background noise to test whether
ML models can truly distinguish between signal and background.”

Addressed in:

° Introduction (opening paragraphs) — SUSY/MSSM, neutralino as candidate, relic
abundance argument, reasons WIMPs are hard to detect (citations: Jungman et al., Martin, etc.).
° Introduction (TPC paragraph) — explanation of TPC detection, S1/S2 signals, and how
nuclear recoils relate to WIMP ID.

° 3.2 Preprocessing / feature list — lists physically meaningful observables used for
classification (ties to expected signals).

“Research background score:
The justification for a research background score of 0.8 is unclear and should be elaborated.”

Addressed in:

° 2.1 Hypothesis — references past research to form baselines “obtained from previous related
research ... metrics within the range of 0.80 to 0.85.”

° 4 Results / 5.1 Discussion — shows achieved metrics (~0.843 F1, 0.847 accuracy) relative to
that baseline.

The reviewer thanks the author for the time and effort invested in addressing the previous
comments. However, several important issues remain that need to be resolved before the manuscript
can be considered for publication.

1. Terminology clarification:

The manuscript refers to both Supersymmetry and the Standard Model using the abbreviation
“SM.” This is incorrect and potentially confusing. Supersymmetry should be abbreviated as SUSY,
while the Standard Model should remain SM.

2. Simulation—data consistency:

The current analysis does not account for potential differences between the simulated detector and
real experimental detectors. In real detectors, event detection probability varies with spatial position
and energy. The simulation should therefore be reweighted to reproduce the energy and position
distributions observed in experimental data (e.g., XENONIT).

Without such corrections, the machine-learning model may show artificially strong performance on
synthetic data but fail to generalize to real detector conditions.

3. Feature correlation and multicollinearity:

Several input features appear to be mathematically dependent (for example, S2/S1 is directly
derived from S1 and S2). This introduces high correlation among variables.

While tree-based models such as Random Forest and XGBoost are robust to multicollinearity,
SVMs are sensitive to correlated inputs, which may bias results. It is recommended that the author
examine feature correlations (e.g., via a correlation matrix or Variance Inflation Factor analysis) and
document how such dependencies were handled.

4. Reproducibility and data-handling transparency:

To avoid data leakage and ensure fair evaluation, please clarify the calibration procedure —
specifically, when and on which subsets (training/validation/test) the CalibratedClassifierCV or



equivalent methods were applied. Calibration should be performed strictly on training/validation
data, not on the final test set.

In addition, please include reproducibility details such as random seed, Python version, library
versions, and hardware configuration to enable others to replicate the reported results.

“Terminology clarification: ... Supersymmetry should be abbreviated as SUSY”

o Modifications: Abstract; Introduction.

o Change: Supersymmetry labeled “Supersymmetry (SUSY)”, Standard Model kept as
“Standard Model (SM)”.

° “Reweight to reproduce energy and position distributions ...”

o Modifications: Section 3.1 (Data generation); Section 4 (Results).

o Change: Added 2D energy—position reweighting (50%50 bins, Gaussian smoothing),
explained how sample weight/resampling were applied during training and reported improved
cross-backend F1 (FastSim—Blueice 0.801—0.822; Blueice—FastSim 0.794—0.818).

° “Examine feature correlations (e.g., S2/S1) and document handling (VIF, PCA, etc.)”
o) Modifications: Section 3.2 (Preprocessing).

o Change: Added Pearson/VIF analysis and documented two SVM mitigations

° “Clarify calibration procedure and provide reproducibility details (seeds, versions,
hardware)”

o Modifications: Section 3.3 (Algorithms); Section 3.1 (Data generation).

o Change: Documented specifications and materials in more detail

The reviewer thanks the author for addressing all of the reviewer’s concerns. I recommend this
paper for publication.




