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Abstract  
Meat freshness is an important aspect of food safety. As one of the most common types of meat, 
accurate assessment of beef freshness helps protect consumers' health and prevent potential 
health risks. To provide a convenient and accessible method for consumers to evaluate beef 
freshness based solely on visual information, we propose a novel deep learning framework that 
creatively integrates U-Net and Generative Adversarial Networks (GANs). Specifically, U-Net 
serves a dual purpose: as the generator within the GAN to produce realistic samples, and as a 
feature extractor for freshness classification. The discriminator in the GANs compels the U-Net 
to learn meaningful and discriminative features that improve classification performance. To 
validate the robustness and adaptability of our model, we executed our model on three different 
individual datasets, as well as the pooled dataset, to demonstrate the effectiveness and versatility 
of our proposed model across various imaging conditions.
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Introduction 
Food  safety  is  a  critical  concern  for  human
health.  According  to  the  World  Health
Organization  (WHO),  foodborne  disease
affects approximately 600 million people each
year  and  causes  420,000 deaths  (1).  Because
meat is perishable, its freshness affects the risk
of  foodborne  illnesses  caused  by  bacterial
contamination,  such  as  Escherichia,
Salmonella,  and  Listeria  (2). Among  various
types  of  meat,  beef  is  one  of  the  most
commonly consumed worldwide,  making it  a
representative  choice  for  studying  meat
freshness.  While  customers  often  rely  on
visible  and  olfactory  cues  such  as  colour,
texture,  and  smell  to  assess  meat  freshness,
these  indicators  can  be  subjective  and
unreliable.  Therefore,  innovative  technologies
for freshness detection are needed to safeguard
public  health  and  maintain  consumer
confidence in meat products (3). 

The  rapid  development  of  artificial
intelligence(AI)  has  found  application  across
various  industries,  including  food  safety.  AI-
based technologies,  particularly deep learning
and  computer  vision,  have  shown  significant
promise  in  automating  and  enhancing  the
detection  process.  Various  studies  (4,5)  have
demonstrated  the  effectiveness  of  AI  in
assessing  meat  quality  and  demonstrated  its
advantages and potential applications. Some of
these studies, such as those by Taheri-Garavand
et  al.  (4) are  based  only  on  the  visual
appearance  of  meat,  aiming  to  simulate  the
real-world  scenario  where  customers  in  a
supermarket can use a visual-based algorithm

to determine freshness simply by capturing an
image. Similarly, Elangovan et al. (6) proposed
an  intelligent  system  combining  machine
learning  algorithms  and  visual  analysis  to
assess meat safety,  marking a significant step
forward  in  food  quality  control  using  visual
data alone.

In this paper, we propose a novel deep learning
framework  for  beef  freshness  classification,
since  beef  is  one  of  the  most  commonly
consumed types of meat.  The proposed model
integrates  two  complementary  models,  U-Net
and  GANs.  U-Net's  unique  capability  lies  in
capturing fine-grained pixel-level features (7).
Part  of  the  bottleneck  can  learn  abstract,
discriminative and semantic representation.  In
our  framework,  we  employed  U-Net  as  the
generator, replacing the traditional generator in
GANs.  Through  adversarial  training,  the
discriminator  encourages  the  bottleneck  to
refine its feature extraction process, enhancing
its focus on classification-critical details. 

2 Related work 

2.1 U-Net 
U-Net, proposed in 2015 for biomedical image
segmentation,  is  a  fully  convolutional  neural
network  with  a  U-shaped  architecture  (7).  It
consists  of  a  contracting  path  for  feature
extraction and a symmetric expanding path for
precise localization.  With skip connections  to
retain spatial information, U-Net can be trained
end-to-end and delivers excellent performance
across various segmentation tasks, especially in
biomedical imaging.
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Figure 1. Architecture of U-Net

U-Net's,  input  is  the  original  image,  and  the
output  is  the  segmented  image,  where  each
pixel is assigned a class label. It learns to map
the input image to a segmentation mask while
preserving  both  important  features  and  fine
details.

2.2 Generative Adversarial Networks
Generative Adversarial Networks (GANs) are a
class  of  AI  models  based  on  deep  neural
networks,  designed  to  generate  new  data
samples which have not existed before, such as

images,  videos,  and  speech  [8].  A  GAN
consists  of  two key  components:  a  generator
and  a  discriminator.  The  generator  takes
random noise as input and produces synthetic
data.  The  discriminator,  acting  as  a  binary
classifier,  distinguishes  between  real  and
generated data. Through continuous adversarial
training,  the  generator  improves  its  ability  to
create realistic outputs, while the discriminator
refines  its  ability  to  differentiate  them.  This
dynamic competition drives GANs to generate
highly convincing and high-quality data.

            
 Figure 2. Architecture of the generator in GANs
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  Figure 3. Architecture of Discriminator in GAN

The advantage  of  U-Net  lies  in  its  ability  to
extract features and preserve details effectively.
In  GANs,  by  adversarial  training,  the
generative  ability  is  enhanced  while  also
improving  classification  performance.  Hence,
we  explored  the  possibility  of  creatively
combining  these  two  powerful  models  to
identify meat freshness.

3 Proposed model 
In our model, we combined the advantages of
U-Net,  which  has  shown  to  be  effective  in

extracting textures and details from biomedical
images, with adversarial learning from GANs,
to enhance classifier  performance and further
improve  the  feature  representation  capability
within  U-Net.  We  propose  a  model  called
FreshUGAN,  where  U-Net  functions  as  the
“Generator”   for  GANs  and  “  Feature
Extractor”  for  the  classifier.  Through
adversarial  learning,  the  model  enables  more
effective feature extraction and classification. 

  
                                                    

 Figure 4. Framework of the proposed model
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3.1  Dual role of U-Net: feature extractor and
generator
U-Net  achieves  above  average  segmentation
results  due  to  its  symmetric  U-shaped
architecture  and  skip  connections,  which
enable  it  to  capture  both  global  and  local
features  while  preserving  high-resolution
information.   The expanded path reconstructs
the  input  image by the  bottleneck layer  with
skip  connections.  The bottleneck layer,  set  at
the  bottom  of  the  U-Net,  is  adjacent  to  the
output of the final contracting layers. It serves
as a feature representation of the input image. 
Therefore,  a  perfect  bottleneck  representation
results  in  a  high-quality  reconstructed  image.
Conversely,  a  well-reconstructed  image  must
be from a valuable and well-learned bottleneck
layer. 

The input image can be represented as X, in U-
net,  the  contracting  path  maps  it  to  the
bottleneck  layer  Z,  hence   Z= f con(X ,Өcon)
(eq.1),  where  f con is  the mapping function of
the  contracting  path,  and  Өcon refers  to  the
contracting path parameters. In the expanding
path,  Z is  an  input  of  the  decoder  function,
X̂=f exp(Z ,S1 , S2⋅ ⋅⋅ ,Sn ;Өexp)   (eq.2),   where
Өexp represents the expanded path parameters,
and  X̂ is  the  reconstructed  image,  Si which
refers  to  the  i− tℎ skip  connection  of  the
contracting path. If U-Net is well-designed and
satisfies  the  equality  X̂ ≈ X
(eq.3),  this  would  be  indicative  that  the
bottleneck  layer  Z is a  low-dimensional  but
effective  feature  representation  of  the  input
image  X.  Furthermore,  a  more  accurately
reconstructed image indicates a more effective
and  expressive  bottleneck  representation.The

mean-squared error for image reconstruction is

LMSE=
1
N ∑

i=1

N

(X i− X̂ i)    (eq.4) .

3.2  A  Discriminator  for  adversarial  feature
refinement
To obtain a well-learned feature representation,
we  employed  a  discriminator  through
adversarial  learning  to  enforce  the  expanded
path  to  reconstruct  an  image  that  closely
resembles  the input.  This  process  encouraged
the  bottleneck  to  capture  a  more  meaningful
and representative feature representation.

As  mentioned  in  section  2.2  Generative
Adversarial  Networks ,  a  discriminator  D is
trained to distinguish between the real image X
and the reconstructed image  X̂. The objective
was to make the attributes of  X̂  as close as
possible  to  those  of  X so  that  discriminator
cannot  distinguish  betweeen  the  two.  The
adversarial  loss  is  defined  as
Ladv=min[−[ logD(X x pdata)]+log [1−D( X̂ x pu −net)]]
(eq.5),   where  D (X x pdata

) represents  the
probability  that  the  discriminator  classifies  X
as a real image, and D ( X̂ x pu− net) represents the
probability that  X̂ is  a real image. Therefore,
the combined loss function for the U-Net and
adversarial learning is  L=LMSE+Ladv   (eq.6).

3.3 Freshness classification 
The  bottleneck  representation  would  hence
contain  the  features  which  can  be  used  to
identify  the  freshness  of  meat.  We  built  the
classifier  with  a  fully  connected  neural
network.  The  initial  classifier  layer  was
flattened and was followed by two dense layers
with  different  neurons,  both  activated  by
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ReLU. The final output layer used a softmax
activation  with  three  (number  of  categories)
neurons,  producing  class  probabilities  for
multi-class classification.  

This classifier was then integrated with a U-Net
architecture,  meaning that the final model used
the  original  U-Net  input  and  produced  a
classification  output  based  on  the  extracted
features.  The  model  was  compiled  with  the
Adam optimizer and categorical cross-entropy
loss,  making  it  suitable  for  multi-class
classification tasks. 

4 Methods
In  our  work,  we  utilized  the train_test_split
function  (from  sklearn.model_selection) to
ensure  randomness  and  maintain  class
distribution.  Furthermore,  during  the  model
training process, data was fed in batches, and
these batches were randomly sampled in each
epoch. As a result,  the model was exposed to
different  batch  compositions  across  epochs,
which  enhanced  generalization  and  reduced
overfitting. Table 1 lists the model parameters.
These  remained  the  same  for  all  the  three
datasets as well as for the pooled dataset.

Table 1. Model Parameters

Module Parameter Description

U-Net (Generator) Input Shape (128, 128, 3)

Convolutional layers (encoder) 64 →128 →256 →512

Pooling Layers MaxPooling2D(2,2)

Convolutional Layers (Decoder) 256 →128 →64

Upsampling Layers UpSampling2D (2,2)

Discriminator Input Shape (128,128,3)

Convolutional Layers 64→128

Output Layer Activation Sigmoid

Classifier Input Shape (512, 16, 16)

Fully Connected Layers 128 → 64

Output Layer Activation Softmax

Neuron Number 3

The first and the third dataset were already split
into  training  and  testing  sets  with  balanced
class distributions. For the second dataset, we
applied  the  train_test_split  function  with  the
stratify parameter enabled to perform stratified
sampling.  This  function  preserved  the  class
distribution  consistency  and  prevented  biases
that  could  adversely  affect  model
performance.This  ensured  that  each  subset

maintained a representative proportion of each
class,  facilitating  fair  comparison  and
reproducibility among researchers.

We  did  not  perform  k-fold  cross  validation.
Instead,  we  validated  the  robustness  of  our
method  using  several  approaches.  First,  the
first  and  third  datasets  we  used  are  publicly
available  standard  datasets  with  training  and
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testing splits carefully defined by the original
publishers. These splits ensured balanced class
distributions  and  representativeness  and  are
widely  accepted  within  the  academic
community. Second, for the combined dataset,
we applied an 80/20 random split for training
and  testing,  a  ratio  commonly  recognized  as
standard  and reasonable  in  both  industry  and
academia.  These measures collectively ensure
that  our  model  performed  consistently  and
reliably  across  different  data  partitions,   thus
demonstrating its robustness.

5 Results 
To evaluate the effectiveness of our proposed
model, we performed experiments using three
related  meat  freshness  classification  datasets,
and finally, on the pooled dataset.

5.1 First dataset
The first dataset was provided by the Roboflow
Team (11), which contained 2,266 images. This
dataset was originally collected for food quality
assessment,  machine  learning-based  freshness
detection, and shelf-life prediction. Each image
is  labeled as  one  of  three  categories:  Fresh,
Half-Fresh,  and  Spoiled.   Figure.  5  shows
representative samples from the dataset.  

                       

Figure 5. Representative samples for each category
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Figure 6. Category distributions in the training and test datasets

As shown in Figure 5, the images in both the
training  and  testing  datasets  were  captured
under  various  lighting  conditions.  This
diversity  helped  improve  the  model’s
generalization ability. Additionally, the training
and  testing  sets  were  randomly  selected,
ensuring  that  the  evaluation  results  were
meaningful and robust.

Figure  6,  shows  that  the  “FRESH”  and  the
"SPOILED" categories contained the most and
the least samples respectively. The number of
samples  across  the  three  categories  was
relatively  balanced,  with  no  significant  class
imbalance.  Using  the  parameters  in  Table  1,
our  model  achieved  an  accuracy  of  90.91%.
The labels were assigned as follows: Spoiled =
0, Half-Fresh = 1, and Fresh = 2.

       

Figure 7. Training and Validation Accuracy over Epochs                 Figure 8. Confusion matrix     
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Figure 7 shows that the training and validation
accuracy  curves  begin  to  stabilize  from  the
20th  epoch  onward.  This  indicates  that  the
model has largely converged and is no longer
experiencing  significant  performance
fluctuations. Additionally, the performance gap
between  the  training  and  validation  sets
remained < 10%. This suggested that the model
generalized well on the data and did not suffer
from severe overfitting.        

A  Confusion  matrix  was  constructed  that
summarized  the  performance  of   the
classification  model  by  comparing  its
predictions  against  the  actual  annotated
ground-truth. The diagonal elements represent
correct  predictions,  while  off-diagonal
elements  represent  misclassifications  between
different classes. To maintain consistency with
the  subsequent  experimental  results,  we  used
the word "rotten" to represent the “SPOILED"
category in the confusion matrix.

Figure 8 shows that for the category SPOILED
(rotten)  out  of  114  samples,  there  were  106
samples that were correctly classified, while 8
were misclassified, where 7 were predicted as
HALF-FRESH (half), and 1 as FRESH (fresh).

For  the  HALF-FRESH  (half)  category,  159
samples were correctly identified, however 11
were  incorrectly  predicted  as  fresh,  which
could  pose  a  potential  food  safety  risk.  This
was  likely  due  to  the  high  visual  similarity
between the two categories in terms of colour
and texture, as illustrated in Figure 5.

Regarding  the  FRESH  (fresh)  category,  160
samples  were  correctly  classified,  with  3
misclassified as SPOILED (rotten), which is a
conservative  error  but  may  still  lead  to
unnecessary  waste. Figure  9,  shows  several
randomly selected samples from the testing set
along with their predicted results. "T" denotes
the true label, and "P" indicates the predicted
label.

A classification report is a commonly used tool
to evaluate a model’s performance. It includes
key metrics, such as precision, which refers to
the  number  of  true  positives  divided  by  the
total  number  of  positive  predictions  (i.e.,  the
number  of  true  positives  plus  the  number  of
false positives).; recall, measures how often the
model  correctly  identifies  positive  instances
(true  positives)  from  all  the  actual  positive
samples in the dataset.; and the F1-score, which
is the harmonic mean of precision and recall,
offering a balanced assessment of the model’s
performance.  The  "support"  column indicates
the number of true samples for each class in the
dataset,  that is,  the actual occurrences of that
class.  The  different  averages  are  ways  to
calculate  metrics  for  multiple  classes.  The
Macro average  calculates  the metric  for  each
class  first,  then  take  the  average.  All  classes
have  equal  weight.  The  Weighted  average
calculates the metric for each class, then take a
weighted  average  based  on  the  number  of
samples  in  each  class.  Classes  with  more
samples  have  more  influence.  The  Micro
average combines all classes’ prediction results
and calculates the overall metric. This is useful
as an indicator of the overall performance when
the classes are imbalanced.

Journal of High School Science, 9(3), 2025                                                                              296



Original article

Figure 9. Several samples from the testing set along with their predicted results

The results in Table 2 and Figure 8 suggest that
the model performs well overall, demonstrating
a strong ability to distinguish between classes,
with precision and recall  numbers of  ~ 90%.
However,  the  overlap  between the  Fresh  and
Half-Fresh categories, as well as the examples

of  Spoiled  samples  being  misclassified  as
Fresh, shown in Figures 8 and 9 highlights the
need  for  either  a  more  refined  feature
extraction  or  better  data  augmentation  to
improve  classification  accuracy  in
misclassified cases.
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Table 2. Classification report

Precision Recall f1-score support
Spoiled (0) 0.90 0.93 0.91 114
Half fresh (1) 0.89 0.92 0.90 159
Fresh (2) 0.95 0.88 0.91 178
Micro avg 0.91 0.91 0.91 451
Macro avg 0.91 0.91 0.91 451
Weighted avg 0.91 0.91 0.91 451
Samples avg 0.91 0.91 0.91 451

5.2 Second dataset
The second dataset, referred to as “Images of
Fresh and Non-Fresh Beef Meat Samples,” is
taken  from Sanchez  et  al.  (12).  This  dataset
contains  images  of  thirty  beef  meat  samples
across three different cuts: inside skirt, knuckle,
and sirloin.  For  each cut,  ten  pieces  of  meat
(each  measuring  5  cm  ×  5  cm)  were  used.
Images  were  captured  on  two different  days.
The  first  day  after  purchase  were  labeled  as
fresh, and  the  fifth  day  after  purchase  were
labeled as non-fresh. This resulted in a total of

60  meat  images,  30  fresh  and  30  non-fresh,
evenly  distributed  across  the  three  cuts.
Additionally,  the  dataset  included
corresponding segmentation images for each of
the 60 samples, which could directly be used
for classification purposes. Therefore, to adapt
our model to this binary classification task, we
made  modifications  to  the  output  layer.  As
shown in Table 1, the classifier should have a
single output neuron with a sigmoid activation
function. Representative samples of the dataset
are shown in Figure 10.

 

 

Figure 10. Sample images from three different meat cuts, each with corresponding fresh and non-fresh examples
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Figure 11. Training and validation accuracy over epochs                 Figure 12. Confusion matrix   

Table 3. Classification report

Precision Recall fi-score Support
Not fresh 0.71 0.71 0.71 7
Fresh 0.60 0.60 0.60 5
Accuracy 0.67 12
Macro avg 0.66 0.66 0.66 12
Weighted avg 0.67 0.67 0.67 12

As shown in Table 3, for this dataset, the model
achieved  a  classification  accuracy  of  ~  70%.
This low accuracy could have resulted from the
limited size of the training dataset significantly
constraining  the  model’s  performance.  From
the training curves shown in Figure 11, it can
be seen that the model is prone to overfitting,
which means that it achieved a high accuracy
on the training set but relatively poor accuracy
on the test set.

5.3 Third dataset 
The  third  dataset  we  utilized  was  the  Beef
Quality  Image  Dataset  for  Deep  Learning,

referred  to  as  LOCBEEF,  obtained  from
Dharma et al. (13). This dataset was organized
into two main directories, train and test. Each
of  these  directories  contained  two  subfolders
corresponding  to  the  categories  fresh  and
rotten.  In  total,  the  dataset  included  2,288
images for training and 980 images for testing.
Similar to the second dataset, LOCBEEF was a
binary classification dataset  with two classes,
fresh  and  rotten.  Therefore,  we  applied  the
same model architecture and parameter settings
as those used for the second dataset.
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Figure 13. Representative images for each category

Figure 14. Training and validation accuracy over epochs             Figure 15. Confusion matrix   

Table 4. Classification report

Precision Recall f1-score Support
Rotten 0.99 0.97 0.98 490
Fresh 0.97 0.99 0.98 490
Accuracy 0.98 980
Macro avg 0.98 0.98 0.98 980
Weighted avg 0.98 0.98 0.98 980

The classification report  (Table 4) shows that
the  model  performed  well  on  both  classes,
achieving  an  overall  accuracy  of  98%.  The
precision  and  recall  values  were  both  ~  1,

indicating  that  the  model  returned  very  few
false positive or false negative predictions. 

5.4 Merged data from the three datasets
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To  demonstrate  the  generalization  and
robustness  of  the  model,  we  combined  three
different  datasets  for  training.  During  this
process we addressed two challenges, the first
of  which  involved  label  harmonization.  The
first  dataset  contained  three  categories,  while
the second and third datasets only included two
each.  To  enable  consistent  multi-class
classification,  we redefined  and relabeled  the
categories  across  all  datasets  using  the  first
dataset  as  a  template.  Therefore,  we retained
Fresh  as  label  2  and  redefined  not  fresh  as
“HALF” (label 1) in the second dataset. In the
third dataset, Fresh was also assigned label 2
for consistency, while rotten was relabeled as
“SPOILED” (label 0).

The  second  challenge  involved  data
reorganization.  To construct  a  new combined
dataset,  we  randomly  selected  a  subset  of
images  from  each  source.  Specifically,  the
combined dataset consisted of 545 images from
the  first  dataset,  60  images  from the  second,

and 980 images from the third. In constructing
the combined dataset, our image selection was
based on three   considerations;  those  of  data
availability, computational feasibility, and class
distribution balance. For the first dataset, which
contains  2,266  images  (1,721  training  +  545
testing), We included the widely adopted 545-
image testing subset, which offered a balanced
class  distribution  and  contributed
representative samples. For the second dataset,
which contained only 60 images, we included
all  of  them  to  ensure  completeness.  For  the
third  dataset,  which  contained  over  3,200
images  (2,288  training  +  980  testing),  we
selected the 980-image testing subset,  just  as
we did for the first dataset. The reason for this
selecting this particular combination of images
was to avoid computational overload and data
imbalance.  In  addition,  the  testing  subsets
chosen  had  balanced  class  distributions  and
diverse  image conditions,  making them more
suitable for reliable training and evaluation. 

Figure 16. Training and validation accuracy over epochs                           Figure 17. Confusion matrix
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Table 5. Classification report

Precision Recall f1-score Support
Rotten 0.93 0.93 0.93 122
Half-fresh 0.60 0.51 0.55 35
Fresh 0.90 0.93 0.91 142
Accuracy 0.88 299
Macro avg 0.81 0.79 0.80 299
Weighted avg 0.87 0.88 0.88 299

The model achieved an accuracy of  ~ 87% on
the pooled dataset. 

5.5 Minimizing false negatives
Rotten or half-fresh food classifed as fresh can
have severe implication for food safety. Dataset
1 is one of the most authoritative and widely
recognized public datasets in this field. Its data
collection  process  and  labeling  standards  are
rigorous,  closely  reflecting  real-world
consumer  scenarios  when  assessing  meat
freshness in supermarkets. Our model achieved
a false negative rate of  1/106 ≈ 0.94% on this
dataset,  successfully  staying  below  the  1%
threshold, demonstrating the model’s reliability
under  ideal  data  conditions.  In  contrast,
Datasets  2  and  3  can  be  argued  to  be  of
noticeably  lower  quality.  Their  collection
environments  and  labeling  standards  do  not
seem to  align  well  with  real-world  consumer
scenarios. For example, in Dataset 3 (17/473 ≈
3.59%),  the  objects  are  not  clearly  visible  or
large enough, and the texture details are poorly
defined.  Additionally,  both  datasets  support
only binary classification, lacking intermediate
categories such as 'half-fresh,' which increases
the  risk  of  misclassifying  rotten  samples  as
fresh and results in higher false negative rates.
For  the  combined  dataset,  the  false  negative
rate  is  approximately  2.65%  (3  out  of  113),

which  we  consider  acceptable  given  the
varying  labeling  standards  and  image  quality
across the three datasets. Therefore, a model’s
effectiveness depends not only on the algorithm
itself  but  also  on  whether  the  data  is
representative  and  accurately  labeled.  Since
different  image  quality  is  expected  to  be
encountered in real-life situations, it  could be
that  device-  independent,  color  space
perceptual  models,  such  as  CIELAB  and
CIELUV;  as  defined  by  the  International
Comission on Illumination; could be embedded
within models such as ours to improve stand-
alone, image-only food-freshness predictability.
When combined with a color-changing dye or
equivalent  as  a  surrogate  for  spoilage  (see
Limitations),  the  minimization  of  false-
negatives  using  imaging  alone  becomes  even
more plausible.

6 Limitations
The training and testing data in this study were
primarily  based  on photographs of  beef  cuts;
therefore,  the  model’s  current  capability  is
limited  to  assessing  beef  freshness.  It  is
important to note that a deep learning model’s
classification  ability  largely  depends  on  the
type  and  quality  of  the  training  data.  If  a
comprehensive  dataset  including  other  meat
categories such as fish, chicken, lamb; among
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others;  with  appropriate  annotations  were
available, the model could theoretically classify
the  freshness  of  meat  from  multiple  meat
categories. Since the current data only included
beef,  the  scope  and  title  of  this  study  are
limited  to  beef  freshness  classification  to
accurately reflect the application boundary.

Furthermore,  for  large  cuts  of  meat,  if  the
interior  is  rotten,  but  the  surface  is  not,  the
model  cannot  accurately  determine  freshness,
since  it  can  only  analyze  the  visible  area
captured by a camera. The algorithm can only
detect spoilage caused by microorganisms that
lead  to  visible  changes;  microorganisms  or
other factors that cause decay without altering
visual features cannot be detected. If method(s)
could be developed  - using food safe dyes as
an example – to allow any decay to migrate and
translate into a subtle color or texture change
throughout  the  entirety  of  the  cut-meat,
methods such as the one described here (using
only images to detect freshness) could be used
with no limitations. The other alternative would
be  to  revert  back  to  multimodal  detection
techniques  using  other  environmental  sensors
and  biosensors  (including  those  that  could
detect  olfactory,  enzymatic  and  gaseous
changes) in conjunction with visual image data.

7 Conclusion
In  this  paper,  we  proposed  a  novel  model,
which we term FreshU-GAN, which integrates

the model architectural strengths of U-Net and
Generative Adversarial Networks (GANs). The
U-Net  component  functioned  as  an  auto-
encoder to extract detailed visual features from
meat  images,  while  the  adversarial  training
mechanism in the GAN encouraged the model
to  reconstruct  images  that  were
indistinguishable  from  real  samples,  thereby
enhancing feature learning.

To validate the effectiveness and robustness of
our  approach,  we applied  the  model  to  three
individual  beef  datasets,  each  containing
images of beef cuts - one with three freshness
categories  and  two  with  binary  (fresh/rotten)
classification. We also evaluated the model on
a combined dataset, containing images from all
the three individual datasets to demonstrate its
generalization  capability  across  different
dataset settings.

This method was designed to be user-friendly,
allowing consumers to simply upload a photo
of  the  meat  and  receive  an  initial  freshness
assessment.  The  method  is  unique  in  that,  it
determines  meat  freshness  only  from  visual
image data without relying on inputs from any
additional environmental or biosensor data. For
future  work,  we aim to  enhance  the  model’s
ability to detect subtle visual cues of spoilage,
further  increasing  classification  precision  and
reliability.
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