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Abstract

Alzheimer's disease (AD), a neurodegenerative disorder that affects millions across the world
annually, is recognized by a progressive decline in cognitive functions such as memory,
orientation, and reasoning. Despite large advances in the understanding of its pathology, ranging
from recent identification of amyloid-§ plaques to tau tangles, treatment and early diagnosis
remain very elusive. This study presents an enhanced Convolutional Neural Network (CNN)
model designed to classify MRI images into four stages of Alzheimer's disease: non-demented,
very mildly demented, mildly demented, and moderately demented. The model incorporates four
convolutional layers with ReLLU activation, batch normalization, and max-pooling, followed by
fully connected layers with dropout regularization to prevent overfitting. Trained on a weighted
dataset of 6400 MRI images, the model achieved a peak training accuracy of 99.7% with a final
testing accuracy of 88.79% on unseen data. This study ultimately underlines the potential that
CNNs hold for early detection and accurate classification of Alzheimer's disease as a powerful
tool for enhancement in diagnostic precision within clinical settings.
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1. Introduction

Alzheimer's disease (AD) affects millions
worldwide and is characterized by the
progressive loss of memory, disorientation, and
intellectual decline that interfere with daily
activities. The cause of Alzheimer's remains
evasive, but the pathological hallmarks are
quite defined: the accumulation of amyloid-
beta plaques and tau tangles in the brain that
disrupt communication between neurons and
lead to degeneration of brain tissue (1). While
the majority

of cases are sporadic, being late-onset and
driven by a mix of genetic, lifestyle, and
environmental factors, early-onset familial
Alzheimer's disease has been found to be due
to certain specific genetic mutations (2). The
identification of these mutations has been very
important in making progress toward the
understanding of the molecular basis of the
disease, although the actual mechanisms are
quite complex.

Recent advances in neuroimaging have
contributed significantly to present knowledge
about Alzheimer's disease. Technologies such
as positron emission tomographies (PET) and
cerebrospinal fluids (CSF) flow imaging have
made it possible to visualize the amyloid
plaques and tau tangles in living patients (3). It
has  allowed insights into AD
pathobiology, enabling earlier diagnosis and
identification of AD stages. Working
tandem, the rise of Artificial Intelligence,
particularly neural networks, has further
broadened the area of research for Alzheimer's.

new

in

Convolutional Neural Networks (CNN) with
advanced image processing capabilities have
been used to

increasingly analyze
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neuroimaging data, enabling more accurate
prediction and classification of Alzheimer's
disease, automating processes that can
otherwise be susceptible to risk-factors. For
example, CNNs may detect very small patterns
and changes in structure in brain scans that
may go unnoticed, mostly, even by human
eyes. This could, hence, detect the disease at a
much earlier stage and consequently hold
possibilities for intervention that might alter the
course of the disease, or potentially even delay
itt. CNNs can also be important
distinguishing Alzheimer's from other types of
dementia, and thereby increase the diagnostic
accuracy and personal treatment approach (4).

in

This paper ultimately aims to develop a
Convolutional Network Network (CNN)
specially dedicated to classifying the severity
of Alzheimer's disease through MRI scans in
the following four categories: non demented,
very mildly demented, mildly demented, and
moderately demented. The model design
includes four convolutional layers with ReLU
activation, combined with batch normalization
and max-pooling, followed by fully connected
layers that utilize dropout regularization to
mitigate overfitting.. The model will make use
of a set of MRI images that are pre-labeled,
augmented through various transformations, to
enhance its robustness. By leveraging such
architecture, the paper aims to enhance early
detection and differentiate the stages related to

Alzheimer's  while synthesizing existing
research, finding advances, and expanding the
scope of knowledge within the field of
neurology.
2. Literature review
2.1 Nature of Alzhehimer’s disease
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Alzheimer's disease was first discovered in
1906, yet it
widespread and complex neurodegenerative
diseases in the world. It affects about 10% of
people over the age of 65, which translates to >
50 million people globally. Although much
research has been performed across the past
several years, this complex disease challenges
cognition levels and consequently complicates
the development of effective treatments (5).
Characterized by progressive decline
cognitive functioning, Alzehimer’s originates
within a central area, branching off into certain
formations that result after its onset. The first
structures affected include the hippocampus - a
vital part of the temporal lobe - which is mainly

remains one of the most

in

responsible for long-term memory function.
The core diagnostic features include the
amyloid-beta plaques and tau protein tangles in
the brain. Amyloid plaques are formed due to
abnormal processing of amyloid precursor
protein, which leads to extracellular deposits
impairing neuronal communication, whereas
tau tangles occur from hyperphosphorylated tau
which results intracellular  aggregates
disrupting microtubule stability and eventually
leads to the death of neurons (6). The
contribution of chronic neuroinflammation,
driven by the prolonged activation of microglia
and astrocytes, exacerbates neuronal damage
and accelerates the progression of disease
pathology. Neural damage is further enhanced
by chronic neuroinflammation as a result of
activated microglia and astrocytes, continuing
to contribute to the disease pathology (7). In
fact, emerging evidence suggests that other
biological factors have been shown to increase
susceptibility to the early-onset of Alzheimer's
disease; namely genetic features, such as
mutations in a number of genes including APP,

in
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PSEN1, and PSEN2 (8). Alzheimer's
pathophysiology additionally includes synaptic
dysfunction, mitochondrial abnormalities, and
oxidative stress, emphasizing the need for
multi-therapeutic approaches (9). For these
reasons, Alzheimer's continues to pose a
significant challenge within the world of
medicine due to its complex nature.

2.2 Atrtificial Intelligence progression

Numerous applications of artificial intelligence
have shown significant potential in mimicking
brain  functions and  enhancing  the
understanding of neurological disorders.
Specifically, neural networks, which imitate the
structures and architecture of the human brain,
have found applications in the majority of
fields due to their success in allowing very
complicated tasks to be performed with high
accuracy. Such networks are a composition of
connected nodes or "neurons" that can learn
from data and become more accurate at
prediction over time. In this way, neural
networks become very useful tools for pattern
recognition and making decisions. Over the
recent years,
applications in areas of image and speech
recognition, natural language processing, and
predictive analytics. An example is their use in
image classification tasks, wherein
convolutional networks have
significantly improved and led to progress in
object recognition in images (10). Moreover,
recurrent neural networks have played a very
important role in the enhancement of systems
for speech recognition that allow more natural
interaction with humans (11). Additionally,
deep learning and neural network applications
are currently used in Natural Language
Processing (NLP) for better chatbot and virtual

neural networks have found

neural
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assistant design to improve language
understanding and generation (12). These
advances have been changing various domains
by driving innovations and bringing in newer
ways of working with better efficiency.

2.3 Neural Networks in medical imaging

One of the most promising and impactful
current applications of neural networks is in the
field of medical imaging. Specifically, deep
learning models have continued to improve the
diagnosis of neurological and neuropathic
disorders in recent years. CNNs’ have been
successful disease  detection  and
classification of medical images, even being
able to identify the presence of tumors in

in

mammograms with a high degree of precision
(13). These networks can also segment organs
and tissues in MRIs and CT scans for improved
planning and treatment monitoring (14).
Furthermore, neural networks can help to
predict patient outcomes by analyzing patterns
in medical imaging data, hence facilitating
strategies personalized
prescriptions (15). These applications; among
others; highlight the crucial role played by
neural networks in improving medical imaging
for refined diagnosis.

for medical

2.4 Neural Networks in Alzheimer’s detection
Neural networks, particularly deep learning
models, have made huge contributions in the
world

of research in Alzheimer's disease and, more
importantly, early detection and diagnosis.
They have proved significant in the analysis of
neuroimaging data such as from MRI and PET
scans that trace the initial signs of Alzheimer's,
making it easier for prevention detection (16).
These techniques have been fairly accurate in
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detecting patterns of brain atrophy, more so in
the hippocampus and other very vital parts of
the brain relative to Alzheimer’s. These
structures could be segmented with detailed
insight into the disease’s course through
CNNs’. Further, advances in neural networks
have allowed the integration of genetic,
clinical, and neuroimaging multimodal data in
such a way as to offer better capabilities in
terms of diagnosis and prognosis (17).
However, various challenges remain, such as
the requirement for a large annotated dataset,
which often proves to be resource-intensive to
acquire. Generalization across thousands of
diverse populations also presents
challenges due to demographic and clinical

several

variations, which impact model performance.
Furthermore, the interpretability of complex
algorithms will also be extremely relevant for
gaining trust in clinics since clinicians have to
their
conclusions to adequately trust them (18).
Despite  these  complexities, techniques
employed through neural networks
continue improving in the scope of early
detection, diagnosis, and treatment monitoring
of Alzheimer's disease and improve patient
outcomes, furthering the understanding of the
several nuances present within this condition.

understand how  models derive

will

3. Methods

3.1 Dataset

In this paper, the dataset used to train and test
the image classification model was obtained
from Kaggle and consisted of 6400 MRI
images of Alzheimer’s patients sourced from
public hospitals, subdivided into four classes:
mild demented (896 images), moderate
demented (64 images), non demented (3200
images), and very mild demented (2240
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images) (19). The examples are shown below
in Figure 1. The dataset provided images of

Original article

size 128x128 pixels, which we resized to
224x224 for our model processing.

Figure 1. Mild (1* from left), Moderate (2™ from left), Non Demented (3" from left), and Very Mild (4™ from left)

3.2 Data preprocessing

To efficiently train the CNN for classifying
MRI images of Alzheimer's disease into four
distinct categories, data preprocessing was
performed using a custom dataset class. The
following subsections describe the steps taken
to preprocess the data, build the dataset, and
prepare it for input into the model.

3.2.1 Train-Test split

The dataset was split in an 80:20 ratio into
training and testing datasets. Due to the
architecture of the model (Section 3.3), the last
convolutional layer output a 2048-dimensional
feature vector (therefore, the number of
features in this case was 2048). This suggested
that approximately 2.2% of the data should be
allocated to testing, and the remaining 97.8%
should be used for training. However, the 80:20
split provided a better balance between training
the model with sufficient data and ensured that
the test set was large enough to give a reliable
estimate of performance. A stratified split,
based on class labels, was performed to ensure
that each of the four classes was proportionally
represented in both the training and testing sets.

Journal of High School Science, 8(4), 2024

This ensured that the performance evaluation
of the model would not be biased toward any
specific class. Images from all four categories
(Mild Demented, Moderate Demented, Non-
Demented, and Very Mild Demented) were
divided in such a way that no overlap occurred
between the training and testing datasets. This
ensured a fair evaluation and helped reduce the
risk of overfitting.

3.2.2 Data loader and input preparation

The PyTorch Datal.oader class was utilized to
efficiently load the dataset into batches for
parallel processing. Batching helps in speeding
up the model training process, allowing for
better memory management. The batches were
shuffled during loading to prevent any potential
biases that could affect model learning. Each
image was resampled into the RGB format and
standardized for uniformity. This preprocessing
step, combined with batch loading, made it
simpler for the CNN to process the images,
ensuring efficient training. (Figure 2).
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__getitem__(self, idx):
img_path, label
image

self.transform:
image
image, label
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self.data[idx]
Image.open(img_path).convert('RGB')

self.transform(image)

Figure 2. Data preprocessing sample

3.2.3 Image transformation

A series of transformations were applied to
standardize and augment the MRI images
before input into the CNN model. The images
were resized to 224x224 pixels, converted into
PyTorch tensors, and normalized using the
mean and standard deviation values of [0.485,
0.456, 0.406] and [0.229, 0.224, 0.225],
respectively. These are standard values for

transform = transforms.Compose( [

transforms.Resize( (224, 224)),
transforms.RandomHorizontalFlip(),

transforms.RandomRotation(10),
transforms.ToTensor(),

models trained on ImageNet and ensure
compatibility with pretrained architectures like
ResNet  (Figure 3). addition, data
augmentation techniques like random rotations,
horizontal flips, and color jitter were applied to
increase the diversity of the training data,
which aids in better generalization and prevents
overfitting.

In

transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

Figure 3. Data loading sample

3.2.4 Feature extraction and correlation
analysis

After the model loaded and processed the input
images, feature extraction was performed on
the final convolutional layer (Section 3.3.1) to
capture meaningful patterns. A Pearson
correlation analysis was then applied to the
extracted features to evaluate relationships and
identify any potential multicollinearity. This

correlation analysis, visualized through a
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heatmap in Figure 4, showed that the features
were relatively uncorrelated (lighter blocks
rather than darker), suggesting that the feature
extraction from the CNN captured diverse and
independent information from the input data.
While multicollinearity does not directly
impact prediction, this ultimately reduces
redundant features and enhances computational
efficiency within our model.
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Figure 4. Pearson correlation heatmap of features

Input (3x224x224)
MRI Scan

Conv2D (3-32)

BatchNorm2D (32
RelU
MaxPool2D (2x2)

Conv2D (32-64)

BatchNorm2D (64

Conv2D (64-128)

BatchNorm2D (128
MRall

|

EI

MaxPool2D (2x2)

Conv2D (128-256.

BatchNorm2D (256
Rel

@I

MaxPool2D (2x2)
Linear (256*14*14-1024)
Dropout (0.5)
Linear (1024-512
Dropout (0.5)

Linear (512-4)

Output (Class Prediction)
[Non-Demented, Very Mildly Demented, Mildly Demented, Moderately Demented]

Figure 5. CNN architecture and model flow diagram

3.3 Model architecture and implementation medical image classification. The ResNet50
As depicted in Figure 5, the model used for architecture consists of multiple convolutional
classification was a deep CNN based on the blocks, which extract hierarchical features from
ResNet50 architecture. This model was the MRI images. The final fully connected
pretrained on the ImageNet dataset, allowing it layer of ResNet50 was modified to output
to learn general features that are useful for
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predictions for the four classes of Alzheimer’s
disease progression.

3.3.1 Convolutional layers

As illustrated in Figure 6, the ResNet50
architecture consists of multiple convolutional
layers that progressively extract deeper and
more abstract features from the input images.
Each convolutional layer is followed by batch
normalization, a ReLU activation function, and

EnhancedNeuralNetwork (
__init_ (self):

(EnhancedNeuralNetwork, self).
quential(
kernel_size=3, stride=1, padding=1),

self.model = nn.
nn.Conv2d(3
nn.BatchNorm2d Y
nn.ReLU(),

Original article

max-pooling to downsample the feature maps.
This process reduces the spatial dimensions
while preserving essential features, making it
easier for the fully connected layers to classify
the image into one of the four categories. The
pretrained convolutional layers from ResNet50
allowed the model to efficiently extract
meaningful features from the MRI images,
which were then fine-tuned for Alzheimer's
disease classification.

init__()

nn.MaxPool2d(kernel_size=2, stride=2),

nn.Conv2d(32, 64, kernel_size=3,

nn.BatchNorm2d(64),
nn.RelLU(),

nn.MaxPool2d(kernel_size=2,
kernel_size=3, stride=1, padding=1),

nn.Conv2d (64,
nn.BatchNorm2d a
nn.RelLU(),

stride=1, padding=1),

stride=2),

nn.MaxPool2d(kernel_size=2, stride=2),

nn.Conv2d(12
nn.
nn.

3

kernel_size=3, stride=1, padding=1),

nn.MaxPool2d(kernel_size=2, stride=2),

nn.Flatten(),
nn.Linear (256 14
nn.RelLU(),
nn.Dropout(@.5)
nn.Linear(1024,
nn.RelLU(),
nn.Dropout(@.5),
nn.Linear(512, 4)

)

forward(self, x):
self.model(x)

14, 1024),

Figure 6. Model architecture sample

3.4 Model training and evaluation

As described in the upcoming subsections, the
training procedure involved minimizing the
loss function, updating the model parameters
through optimization, and monitoring the
model's accuracy across multiple epochs.

3.4.1 Loss function and optimizer

The CrossEntropyLoss function was used
(Figure 7) to process the multi-class

Journal of High School Science, 8(4), 2024

classification task. This loss function is widely
used for multi-class classification tasks, as it
measures the difference between the predicted
class probabilities and the actual class labels.
Class weighting was applied to address the
class imbalance in the dataset. Additionally,
data augmentation techniques (e.g., rotations,
flips, jitter) were used to enhance training data
diversity, mitigating the effects of
imbalance (Section 3.2.3). The Adam optimizer

class
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was chosen for updating model parameters.
Adam adjusts the learning rate dynamically
based on the first and second moments of the

class_weights [1.0 / 896,

class_weights

loss_fn
optimizer

1.0

Original article

gradients, allowing the model to converge more
quickly and effectively during training.

64, 1.0 / 3200, 1.0 / 2240]

torch.FloatTensor(class_weights).to(device)

nn.CrossEntropyLoss(weight=class_weights)
torch.optim.Adam(model.parameters(), lr=1e-4)

Figure 7. Loss function and optimizer sample

3.4.2 Training procedure

The model was trained for 25 epochs, during
which the training dataset was used to
iteratively update the model parameters. The
model.train() function (Figure 8) was used to
enable the training mode, allowing all layers to
update their parameters. For each batch, the

CNN made predictions on the training data,

and the difference between the predicted
outputs and the actual labels was measured
using the CrossEntropyLoss. This loss was
back propagated through the network, and the
Adam optimizer adjusted the model parameters
based on the computed gradients to minimize
the error.

train(dataloader, model, loss_fn, optimizer):

model.train()
size -
batch, (X, y)
X,y
pred = model(X)
loss loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch 100 0
loss, current
print(f"loss: {loss

len(dataloader.dataset)
enumerate(dataloader):
X.to(device), y.to(device)

batch
loss.item(), batch

len(dataloader) 119

len(X)

} [{current }/{size

Figure 8. Training procedure sample

3.4.3 Evaluation procedure

At the end of each epoch, the model was
evaluated on the test dataset using the
model.eval() function, which disables gradient
calculations to save computational resources
and memory. The test data was passed through
the network, and the predicted outputs were

Journal of High School Science, 8(4), 2024

compared with the actual labels to compute the
accuracy of the model (Figure 9). The average
loss on the test data was also calculated to
assess the generalization ability of the model
on unseen data. The model's performance was
tracked across all epochs, with the best-
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performing model being saved based on the

test(dataloader, model, loss_fn):
model.eval()

size len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct 0, 0

torch.no_grad():
batch, (X, y)
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss loss_fn(pred, y).item()
correct (pred.argmax(1)

test_loss
correct
accuracy

num_batches
size
correct

print(f"Test Error: \n Accuracy:

{(100

accuracy

enumerate(dataloader)

accuracy)

Original article

highest accuracy achieved on the test set.

y).type(torch.float).sum().item()

1%, Avg loss: {test_loss

Figure 9. Evaluation procedure sample

3.5 Model prediction and visualization

After completing the training process, the
model was evaluated on unseen test images to
validate its performance over the course of 25
epochs. During each epoch, the model’s
predictions were compared with the actual
class labels from the test dataset to track its
accuracy. The model’s best performance was
automatically saved whenever the test accuracy
surpassed that of previous epochs, ensuring that
the final saved model represented the optimal
state achieved during training. A subset of test
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images was then selected to visualize the
model's ability to classify the four stages of
Alzheimer's disease (as described in Section
3.2.1). These predictions were made using the
best-performing model, and the results,
compared with the true labels, indicated how
well the model generalized to unseen data,
demonstrating its effectiveness in recognizing
patterns across the stages of the disease. This
final evaluation process, including the accuracy
tracking and model saving, is shown in Figure
10.
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epochs 25
best_accuracy = 0.0

t range(epochs):
print(f"Epoch {t+1}\n
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train(train_loader, model, loss_fn, optimizer)

test_accuracy

test_accuracy
best_accuracy

best_accuracy:
test_accuracy

test(test_loader, model, loss_fn)

torch.save(model.state_dict(), "best_alzheimers_model.pth"

print(f"Saved best model with accuracy: {100

print("Training complete!")

best_accuracy }%")

Figure 10. Prediction visualization sample

4. Results

4.1 Training accuracy

As previously mentioned, the model was
trained over 25 epochs, and its performance
was evaluated at each epoch in terms of
prediction accuracy and average loss on the test
dataset. In the initial epoch, the model started
with a training accuracy of 61.2% and an
average loss of 0.85. By the 25th and final
epoch, the model achieved a peak training

Accuracy over Epochs

|y

100
—e— Accuracy

Accuracy (%)

40

2 4 6 8 10 12 14
Epochs

accuracy of 99.7% with an average loss of
0.01. The model was not trained further due to
potential problems with overfitting as the
training accuracy had reached its peak. The
continuous trend of average loss and average
accuracy across epochs can be further
visualized in Figure 11, showing the increase in
accuracy and the decrease in loss during the
preliminary epochs.

Average Loss over Epochs

—e— Avgloss

o
&
T

Average Loss
e

Y

LN

Epochs

Figure 11. Accuracy and Loss Graphs over the course of training/over epochs.
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4.2 Testing results and correlation

The model was finally tested on the unseen
testing dataset (20%), and the predicted class
labels were compared with the actual labels.
The results, visualized as a bar graph in Figure

- Test Accuracy and Loss

88.79

80

60

Percentage / Loss Value

0.3

Test Loss

Test Accuracy

Figure 12. Test accuracy vs test loss comparison

Additionally, to further assess the model's
performance, a and
classification report were generated. The
results (Figure 13) show that the model was

confusion  matrix

implementable, with precision, recall, and F1-
scores for each class demonstrating its efficacy
in identifying multiple stages of dementia.
Notably, the model classified the Moderate
Demented category with no errors, achieving a
precision, recall, and Fl-score of 1.00, as well
as an AUC of 1.0. The Mild Demented class
followed, with an F1-score of 0.93 and AUC of
1.0. The Non-Demented category presented
more challenges, with a F1 score of 0.77, but
maintained a precision of 0.92. The Very Mild
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12, indicate that the model had achieved up to
88.79% testing accuracy and a test loss of 0.30,

with the predictions closely matching the actual
labels.

Classification Report:

precision recall fl-score support
Mild_Demented
Moderate_Demented

Non_Demented

0.87
1.00
0.92
0.77

1.00
1.00
0.66
0.87

0.93
1.00
0.77
0.81

640
640
640
640

Very_Mild_Demented

0.88
0.88
0.88

2560
2560
2560

accuracy
macro avg
weighted avg

Figure 13. Classification report

Demented category performed similarly, with a
precision of 0.77 and an Fl1-score of 0.82. The
confusion indicated  incorrect
classification tendencies, particularly between
the Non-Demented and Very Mild Demented
classes, where several Non-Demented samples
were misclassified as Very Mild Demented and
vice versa (Figure 14). Regardless, the overall
testing accuracy of 88.79% and the ROC
curves with AUC values approaching 1.0 for
all classes (Figure 15) indicated that the model
generalized well, even on unseen data,
providing robust predictions for all dementia
stages.

matrix
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Figure 14. Confusion matrix

Receiver Operating Characteristic (ROC) Curve

0.8
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o

True Positive Rate

o
e
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= ROC curve of class Moderate_Demented (area = 1.00)
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ROC curve of class Very_Mild_Demented (area = 0.96)

0.0

0.2 04 0.6 08 1.0
False Positive Rate

Figure 15. Receptor-Operator Characteristic Curves (AUC)

Finally, to further identify the relationship of
key metrics such as epochs vs accuracy vs
average loss, a correlation matrix was formed
as seen in Figure 16. This matrix is visualized
through a heatmap that depicts the relationship
and interaction between these variables across

negative correlation was
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the training process. As expected, a strong

found between

accuracy and average loss. Moreover, as the
model accuracy increased across initial epochs,
the average loss decreased, thus improving the
model’s performance over time.
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Figure 16. Correlation matrix heatmap

5. Conclusion

The proposed CNN model achieved 99.7% and
88.8% accuracy on the training and testing data
respectively. The evident high correlation
between increased  epochs/batches  and
improved accuracy, together with the trend of a
decrease in loss, provided evidence of both, the
model reliability, and its potential for clinical
application. This accuracy is greater than many
of the current models within this domain. The
ability to correctly classify even the most subtle
difference in stages like the Very Mild
Demented stage, renders the model useful for
early diagnosis. Another advantage of the
model is that predictive accuracy on different
stages of Alzheimer's disease is well-balanced
(as class imbalance is a common problem faced
by many existent models).

5.1 Limitations and potential improvement

One potential concern was that the model was
trained on only one large dataset, which may

Journal of High School Science, 8(4), 2024

not present with enough variety found in the

clinical setting. To increase the model's
generalization capability, larger and more
diverse datasets should be used with images
from many more demographics and MRI
machines. Future work might study the
integration of multiple modalities, such as
genetic, clinical, and other imaging modalities
into the proposed model for increased
diagnostic capabilities. Also, while the features
extracted appeared relatively independent and
diverse, were there to be highly correlated
features (indicated by darker red or blue blocks
in the Pearson Correlation Heatmap), those
could potentially be reduced using techniques
like Principal Component Analysis (PCA) to
maximize generalization capability and model

robustness.
Since the model was trained on a locally run

computer with ~ 8 GB of RAM, the model
training took an extended amount of time
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compared to running this same model on a
high-performance with  greater
memory and GPU capabilities. Ultimately, this
may have resulted as a consequence from the
processing of a very large dataset and complex
computations.

machine

Another  significant  consideration  when
applying machine learning to MRI images is
the variability in the diagnostic accuracy of
MRI itself, which typically ranges from 50% to
85%. This inherent variability may introduce
some level of error in the ground truth labels
used for training the model. Consequently,
even though our model achieves relatively high
accuracy (88.79% in testing), this performance
is constrained by the accuracy of the input data,
and errors from the human interpretation of
MRI images may compound with errors
introduced by the model. To mitigate this
effect, the
integration of additional (e.g.,
genetic or clinical data) to reduce reliance on
potentially inaccurate human identified MRI
labels. Furthermore, incorporating uncertainty
quantification techniques in the model can help
indicate predictions where the model's
confidence is lower due to less reliable human
interpreted input data.

should consider
modalities

future work

5.2 Clinical applications

Beyond its presented use to classify the stages
of Alzheimer’s disease based on severity, the
model could be embedded within other
diagnostic tools; including cognitive testing
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