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Abstract
Alzheimer's disease (AD), a neurodegenerative disorder that affects millions across the world 
annually, is recognized by a progressive decline in cognitive functions such as memory, 
orientation, and reasoning. Despite large advances in the understanding of its pathology, ranging 
from recent identification of amyloid-β plaques to tau tangles, treatment and early diagnosis 
remain very elusive. This study presents an enhanced Convolutional Neural Network (CNN) 
model designed to classify MRI images into four stages of Alzheimer's disease: non-demented, 
very mildly demented, mildly demented, and moderately demented. The model incorporates four
convolutional layers with ReLU activation, batch normalization, and max-pooling, followed by 
fully connected layers with dropout regularization to prevent overfitting. Trained on a weighted 
dataset of 6400 MRI images, the model achieved a peak training accuracy of 99.7% with a final 
testing accuracy of 88.79% on unseen data. This study ultimately underlines the potential that 
CNNs hold for early detection and accurate classification of Alzheimer's disease as a powerful 
tool for enhancement in diagnostic precision within clinical settings.
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1. Introduction
Alzheimer's  disease  (AD)  affects  millions
worldwide  and  is  characterized  by  the
progressive loss of memory, disorientation, and
intellectual  decline  that  interfere  with  daily
activities.  The  cause  of  Alzheimer's  remains
evasive,  but  the  pathological  hallmarks  are
quite  defined:  the  accumulation  of  amyloid-
beta plaques and tau tangles in the brain that
disrupt  communication  between  neurons  and
lead to degeneration of brain tissue (1). While
the majority
of  cases  are  sporadic,  being  late-onset  and
driven  by  a  mix  of  genetic,  lifestyle,  and
environmental  factors,  early-onset  familial
Alzheimer's disease has been found to be due
to certain  specific  genetic  mutations  (2).  The
identification of these mutations has been very
important  in  making  progress  toward  the
understanding  of  the  molecular  basis  of  the
disease,  although  the  actual  mechanisms  are
quite complex.

Recent  advances  in  neuroimaging  have
contributed significantly to present knowledge
about  Alzheimer's  disease.  Technologies  such
as positron emission tomographies  (PET) and
cerebrospinal fluids (CSF) flow imaging have
made  it  possible  to  visualize  the  amyloid
plaques and tau tangles in living patients (3). It
has  allowed  new  insights  into  AD
pathobiology,  enabling  earlier  diagnosis  and
identification  of  AD  stages.  Working  in
tandem,  the  rise  of  Artificial  Intelligence,
particularly  neural  networks,  has  further
broadened the area of research for Alzheimer's.

Convolutional  Neural  Networks  (CNN)  with
advanced  image  processing  capabilities  have
been  increasingly  used  to  analyze

neuroimaging  data,  enabling  more  accurate
prediction  and  classification  of  Alzheimer's
disease,  automating  processes  that  can
otherwise  be  susceptible  to  risk-factors.  For
example, CNNs may detect very small patterns
and  changes  in  structure  in  brain  scans  that
may  go  unnoticed,  mostly,  even  by  human
eyes. This could, hence, detect the disease at a
much  earlier  stage  and  consequently  hold
possibilities for intervention that might alter the
course of the disease, or potentially even delay
it.  CNNs  can  also  be  important  in
distinguishing Alzheimer's from other types of
dementia,  and thereby increase the diagnostic
accuracy and personal treatment approach (4).

This  paper  ultimately  aims  to  develop  a
Convolutional  Network  Network  (CNN)
specially  dedicated  to  classifying  the  severity
of Alzheimer's  disease through MRI scans  in
the  following  four  categories:  non demented,
very  mildly  demented,  mildly  demented,  and
moderately  demented.  The  model  design
includes four convolutional layers with ReLU
activation, combined with batch normalization
and max-pooling, followed by fully connected
layers  that  utilize  dropout  regularization  to
mitigate overfitting.. The model will make use
of  a  set  of  MRI images  that  are  pre-labeled,
augmented through various transformations, to
enhance  its  robustness.  By  leveraging  such
architecture,  the  paper  aims  to  enhance  early
detection and differentiate the stages related to
Alzheimer's  while  synthesizing  existing
research, finding advances, and expanding the
scope  of  knowledge  within  the  field  of
neurology.

2. Literature review
2.1 Nature of Alzhehimer’s disease
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Alzheimer's  disease  was  first  discovered  in
1906,  yet  it  remains  one  of  the  most
widespread  and  complex  neurodegenerative
diseases in the world. It affects about 10% of
people over the age of 65, which translates to >
50  million  people  globally.  Although  much
research  has  been  performed  across  the  past
several years, this complex disease challenges
cognition levels and consequently complicates
the  development  of  effective  treatments  (5).
Characterized  by  progressive  decline  in
cognitive  functioning,  Alzehimer’s  originates
within a central area, branching off into certain
formations that result after its onset. The first
structures affected include the hippocampus - a
vital part of the temporal lobe - which is mainly
responsible  for  long-term  memory  function.
The  core  diagnostic  features  include  the
amyloid-beta plaques and tau protein tangles in
the brain. Amyloid plaques are formed due to
abnormal  processing  of  amyloid  precursor
protein,  which  leads  to  extracellular  deposits
impairing  neuronal  communication,  whereas
tau tangles occur from hyperphosphorylated tau
which  results  in  intracellular  aggregates
disrupting microtubule stability and eventually
leads  to  the  death  of  neurons  (6).  The
contribution  of  chronic  neuroinflammation,
driven by the prolonged activation of microglia
and  astrocytes,  exacerbates  neuronal  damage
and  accelerates  the  progression  of  disease
pathology. Neural damage is further enhanced
by  chronic  neuroinflammation  as  a  result  of
activated  microglia  and astrocytes,  continuing
to contribute  to  the  disease pathology (7).  In
fact,  emerging  evidence  suggests  that  other
biological factors have been shown to increase
susceptibility to the early-onset of Alzheimer's
disease;  namely  genetic  features,  such  as
mutations in a number of genes including APP,

PSEN1,  and  PSEN2  (8).  Alzheimer's
pathophysiology additionally includes synaptic
dysfunction,  mitochondrial  abnormalities,  and
oxidative  stress,  emphasizing  the  need  for
multi-therapeutic  approaches  (9).  For  these
reasons,  Alzheimer's  continues  to  pose  a
significant  challenge  within  the  world  of
medicine due to its complex nature.

2.2 Artificial Intelligence progression
Numerous applications of artificial intelligence
have shown significant potential in mimicking
brain  functions  and  enhancing  the
understanding  of  neurological  disorders.
Specifically, neural networks, which imitate the
structures and architecture of the human brain,
have  found  applications  in  the  majority  of
fields  due  to  their  success  in  allowing  very
complicated  tasks  to  be  performed with  high
accuracy. Such networks are a composition of
connected  nodes  or  "neurons"  that  can  learn
from  data  and  become  more  accurate  at
prediction  over  time.  In  this  way,  neural
networks become very useful tools for pattern
recognition  and  making  decisions.  Over  the
recent  years,  neural  networks  have  found
applications  in  areas  of  image  and  speech
recognition,  natural  language  processing,  and
predictive analytics. An example is their use in
image  classification  tasks,  wherein
convolutional  neural  networks  have
significantly  improved and led to  progress  in
object  recognition  in  images  (10).  Moreover,
recurrent  neural  networks have played a very
important role in the enhancement of systems
for speech recognition that allow more natural
interaction  with  humans  (11).  Additionally,
deep learning and neural network applications
are  currently  used  in  Natural  Language
Processing (NLP) for better chatbot and virtual
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assistant  design  to  improve  language
understanding  and  generation  (12).  These
advances have been changing various domains
by driving innovations and bringing in newer
ways of working with better efficiency.

2.3 Neural Networks in medical imaging
One  of  the  most  promising  and  impactful
current applications of neural networks is in the
field  of  medical  imaging.  Specifically,  deep
learning models have continued to improve the
diagnosis  of  neurological  and  neuropathic
disorders  in  recent  years.  CNNs’  have  been
successful  in  disease  detection  and
classification  of  medical  images,  even  being
able  to  identify  the  presence  of  tumors  in
mammograms with a high degree of precision
(13). These networks can also segment organs
and tissues in MRIs and CT scans for improved
planning  and  treatment  monitoring  (14).
Furthermore,  neural  networks  can  help  to
predict patient outcomes by analyzing patterns
in  medical  imaging  data,  hence  facilitating
strategies  for  personalized  medical
prescriptions  (15).  These  applications;  among
others;  highlight  the  crucial  role  played  by
neural networks in improving medical imaging
for refined diagnosis.

2.4 Neural Networks in Alzheimer’s detection
Neural  networks,  particularly  deep  learning
models,  have made huge contributions  in  the
world
of  research  in  Alzheimer's  disease  and,  more
importantly,  early  detection  and  diagnosis.
They have proved significant in the analysis of
neuroimaging data such as from MRI and PET
scans that trace the initial signs of Alzheimer's,
making it easier for prevention detection (16).
These techniques have been fairly accurate in

detecting patterns of brain atrophy, more so in
the hippocampus and other very vital parts of
the  brain  relative  to  Alzheimer’s.  These
structures  could  be  segmented  with  detailed
insight  into  the  disease’s  course  through
CNNs’.  Further,  advances  in  neural  networks
have  allowed  the  integration  of  genetic,
clinical, and neuroimaging multimodal data in
such  a  way  as  to  offer  better  capabilities  in
terms  of  diagnosis  and  prognosis  (17).
However,  various  challenges  remain,  such  as
the requirement  for a large annotated dataset,
which often proves to be resource-intensive to
acquire.  Generalization  across  thousands  of
diverse  populations  also  presents  several
challenges  due  to  demographic  and  clinical
variations,  which  impact  model  performance.
Furthermore,  the  interpretability  of  complex
algorithms will also be extremely relevant for
gaining trust in clinics since clinicians have to
understand  how  models  derive  their
conclusions  to  adequately  trust  them  (18).
Despite  these  complexities,  techniques
employed  through  neural  networks  will
continue  improving  in  the  scope  of  early
detection, diagnosis, and treatment monitoring
of  Alzheimer's  disease  and  improve  patient
outcomes,  furthering the understanding of the
several nuances present within this condition.

3. Methods
3.1 Dataset
In this paper, the dataset used to train and test
the image classification model was obtained
from  Kaggle  and  consisted  of  6400  MRI
images  of  Alzheimer’s  patients  sourced  from
public  hospitals,  subdivided into four classes:
mild  demented  (896  images),  moderate
demented  (64  images),  non  demented  (3200
images),  and  very  mild  demented  (2240
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images) (19). The examples are shown below
in  Figure  1.  The  dataset  provided  images  of

size  128x128  pixels,  which  we  resized  to
224x224 for our model processing.

Figure 1. Mild (1st from left), Moderate (2nd from left), Non Demented (3rd from left), and Very Mild (4th from left)

3.2 Data preprocessing
To  efficiently  train  the  CNN  for  classifying
MRI images  of  Alzheimer's  disease into four
distinct  categories,  data  preprocessing  was
performed  using  a  custom dataset  class.  The
following subsections describe the steps taken
to  preprocess  the  data,  build  the  dataset,  and
prepare it for input into the model.

3.2.1 Train-Test split
The  dataset  was  split  in  an  80:20  ratio  into
training  and  testing  datasets.  Due  to  the
architecture of the model (Section 3.3), the last
convolutional layer output a 2048-dimensional
feature  vector  (therefore,  the  number  of
features in this case was 2048). This suggested
that approximately 2.2% of the data should be
allocated to testing,  and the remaining 97.8%
should be used for training. However, the 80:20
split provided a better balance between training
the model with sufficient data and ensured that
the test set was large enough to give a reliable
estimate  of  performance.  A  stratified  split,
based on class labels, was performed to ensure
that each of the four classes was proportionally
represented in both the training and testing sets.

This  ensured that  the  performance  evaluation
of the model would not be biased toward any
specific class. Images from all four categories
(Mild  Demented,  Moderate  Demented,  Non-
Demented,  and  Very  Mild  Demented)  were
divided in such a way that no overlap occurred
between the training and testing datasets. This
ensured a fair evaluation and helped reduce the
risk of overfitting.

3.2.2 Data loader and input preparation
The PyTorch DataLoader class was utilized to
efficiently  load  the  dataset  into  batches  for
parallel processing. Batching helps in speeding
up  the  model  training  process,  allowing  for
better memory management. The batches were
shuffled during loading to prevent any potential
biases that  could affect  model  learning.  Each
image was resampled into the RGB format and
standardized for uniformity. This preprocessing
step,  combined  with  batch  loading,  made  it
simpler  for  the  CNN  to  process  the  images,
ensuring efficient training. (Figure 2).
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Figure 2. Data preprocessing sample

3.2.3 Image transformation
A  series  of  transformations  were  applied  to
standardize  and  augment  the  MRI  images
before input into the CNN model. The images
were resized to 224x224 pixels, converted into
PyTorch  tensors,  and  normalized  using  the
mean and standard deviation values of [0.485,
0.456,  0.406]  and  [0.229,  0.224,  0.225],
respectively.  These  are  standard  values  for

models  trained  on  ImageNet  and  ensure
compatibility with pretrained architectures like
ResNet  (Figure  3).  In  addition,  data
augmentation techniques like random rotations,
horizontal flips, and color jitter were applied to
increase  the  diversity  of  the  training  data,
which aids in better generalization and prevents
overfitting.

Figure 3. Data loading sample

3.2.4 Feature  extraction  and  correlation
analysis
After the model loaded and processed the input
images,  feature  extraction  was  performed  on
the final convolutional layer (Section 3.3.1) to
capture  meaningful  patterns.  A  Pearson
correlation  analysis  was  then  applied  to  the
extracted features to evaluate relationships and
identify  any  potential  multicollinearity.  This
correlation  analysis,  visualized  through  a

heatmap in Figure 4, showed that the features
were  relatively  uncorrelated  (lighter  blocks
rather than darker), suggesting that the feature
extraction from the CNN captured diverse and
independent  information  from the  input  data.
While  multicollinearity  does  not  directly
impact  prediction,  this  ultimately  reduces
redundant features and enhances computational
efficiency within our model.
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Figure 4. Pearson correlation heatmap of features

Figure 5. CNN architecture and model flow diagram

3.3 Model architecture and implementation
As depicted  in  Figure  5,  the  model  used  for
classification  was  a  deep  CNN based  on the
ResNet50  architecture.  This  model  was
pretrained on the ImageNet dataset, allowing it
to  learn  general  features  that  are  useful  for

medical  image  classification.  The  ResNet50
architecture consists of multiple convolutional
blocks, which extract hierarchical features from
the  MRI  images.  The  final  fully  connected
layer  of  ResNet50  was  modified  to  output
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predictions for the four classes of Alzheimer’s
disease progression.

3.3.1 Convolutional layers
As  illustrated  in  Figure  6,  the  ResNet50
architecture consists of multiple convolutional
layers  that  progressively  extract  deeper  and
more abstract features from the input images.
Each convolutional layer is followed by batch
normalization, a ReLU activation function, and

max-pooling to downsample the feature maps.
This  process  reduces  the  spatial  dimensions
while  preserving essential  features,  making it
easier for the fully connected layers to classify
the image into one of the four categories. The
pretrained convolutional layers from ResNet50
allowed  the  model  to  efficiently  extract
meaningful  features  from  the  MRI  images,
which  were  then  fine-tuned  for  Alzheimer's
disease classification.

Figure 6. Model architecture sample

3.4 Model training and evaluation
As described in the upcoming subsections, the
training  procedure  involved  minimizing  the
loss  function,  updating  the  model  parameters
through  optimization,  and  monitoring  the
model's accuracy across multiple epochs.

3.4.1 Loss function and optimizer
The  CrossEntropyLoss  function  was  used
(Figure  7)  to  process  the  multi-class

classification task. This loss function is widely
used  for  multi-class  classification  tasks,  as  it
measures the difference between the predicted
class probabilities  and the actual  class labels.
Class  weighting  was  applied  to  address  the
class  imbalance  in  the  dataset.  Additionally,
data  augmentation  techniques  (e.g.,  rotations,
flips, jitter) were used to enhance training data
diversity,  mitigating  the  effects  of  class
imbalance (Section 3.2.3). The Adam optimizer
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was  chosen  for  updating  model  parameters.
Adam  adjusts  the  learning  rate  dynamically
based on the first and second moments of the

gradients, allowing the model to converge more
quickly and effectively during training.

Figure 7. Loss function and optimizer sample

3.4.2 Training procedure
The model was trained for 25 epochs, during
which  the  training  dataset  was  used  to
iteratively  update  the  model  parameters.  The
model.train()  function (Figure 8) was used to
enable the training mode, allowing all layers to
update  their  parameters.  For  each  batch,  the
CNN  made  predictions  on  the  training  data,

and  the  difference  between  the  predicted
outputs  and  the  actual  labels  was  measured
using  the  CrossEntropyLoss.  This  loss  was
back propagated through the network, and the
Adam optimizer adjusted the model parameters
based on the computed gradients to minimize
the error.

Figure 8. Training procedure sample

3.4.3 Evaluation procedure
At  the  end  of  each  epoch,  the  model  was
evaluated  on  the  test  dataset  using  the
model.eval() function, which disables gradient
calculations  to  save  computational  resources
and memory. The test data was passed through
the  network,  and  the  predicted  outputs  were

compared with the actual labels to compute the
accuracy of the model (Figure 9). The average
loss  on  the  test  data  was  also  calculated  to
assess  the  generalization  ability  of  the model
on unseen data. The model's performance was
tracked  across  all  epochs,  with  the  best-
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performing  model  being  saved  based  on  the highest accuracy achieved on the test set.

Figure 9. Evaluation procedure sample

3.5 Model prediction and visualization
After  completing  the  training  process,  the
model was evaluated on unseen test images to
validate its performance over the course of 25
epochs.  During  each  epoch,  the  model’s
predictions  were  compared  with  the  actual
class  labels  from the  test  dataset  to  track  its
accuracy.  The  model’s  best  performance  was
automatically saved whenever the test accuracy
surpassed that of previous epochs, ensuring that
the final saved model represented the optimal
state achieved during training. A subset of test

images  was  then  selected  to  visualize  the
model's  ability  to  classify  the  four  stages  of
Alzheimer's  disease  (as  described  in  Section
3.2.1). These predictions were made using the
best-performing  model,  and  the  results,
compared with the true labels,  indicated  how
well  the  model  generalized  to  unseen  data,
demonstrating its  effectiveness  in  recognizing
patterns across the stages of the disease. This
final evaluation process, including the accuracy
tracking and model saving, is shown in Figure
10.
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Figure 10. Prediction visualization sample

4. Results
4.1 Training accuracy
As  previously  mentioned,  the  model  was
trained  over  25  epochs,  and  its  performance
was  evaluated  at  each  epoch  in  terms  of
prediction accuracy and average loss on the test
dataset. In the initial epoch, the model started
with  a  training  accuracy  of  61.2%  and  an
average  loss  of  0.85.  By  the  25th  and  final
epoch,  the  model  achieved  a  peak  training

accuracy  of  99.7%  with  an  average  loss  of
0.01. The model was not trained further due to
potential  problems  with  overfitting  as  the
training  accuracy  had  reached  its  peak.  The
continuous trend of average loss and average
accuracy  across  epochs  can  be  further
visualized in Figure 11, showing the increase in
accuracy  and the  decrease  in  loss  during  the
preliminary epochs.

Figure 11. Accuracy and Loss Graphs over the course of training/over epochs.
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4.2 Testing results and correlation
The  model  was  finally  tested  on  the  unseen
testing dataset  (20%), and the predicted  class
labels  were  compared  with  the  actual  labels.
The results, visualized as a bar graph in Figure

12, indicate that the model had achieved up to
88.79% testing accuracy and a test loss of 0.30,
with the predictions closely matching the actual
labels.

Figure 12. Test accuracy vs test loss comparison Figure 13. Classification report

Additionally,  to  further  assess  the  model's
performance,  a  confusion  matrix  and
classification  report  were  generated.  The
results  (Figure  13)  show that  the  model  was
implementable, with precision, recall,  and F1-
scores for each class demonstrating its efficacy
in  identifying  multiple  stages  of  dementia.
Notably,  the  model  classified  the  Moderate
Demented category with no errors, achieving a
precision, recall, and F1-score of 1.00, as well
as an AUC of 1.0. The Mild Demented class
followed, with an F1-score of 0.93 and AUC of
1.0.  The  Non-Demented  category  presented
more challenges, with a F1 score of 0.77, but
maintained a precision of 0.92. The Very Mild

Demented category performed similarly, with a
precision of 0.77 and an F1-score of 0.82. The
confusion  matrix  indicated  incorrect
classification  tendencies,  particularly  between
the Non-Demented  and Very Mild  Demented
classes, where several Non-Demented samples
were misclassified as Very Mild Demented and
vice versa (Figure 14). Regardless, the overall
testing  accuracy  of  88.79%  and  the  ROC
curves  with  AUC values  approaching 1.0 for
all classes (Figure 15) indicated that the model
generalized  well,  even  on  unseen  data,
providing  robust  predictions  for  all  dementia
stages.
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Figure 14. Confusion matrix

Figure 15. Receptor-Operator Characteristic Curves (AUC)

Finally,  to  further  identify  the relationship  of
key  metrics  such  as  epochs  vs accuracy  vs
average loss, a correlation matrix was formed
as seen in Figure 16. This matrix is visualized
through a heatmap that depicts the relationship
and interaction between these variables across

the  training  process.  As  expected,  a  strong
negative  correlation  was  found  between
accuracy  and  average  loss.  Moreover,  as  the
model accuracy increased across initial epochs,
the average loss decreased, thus improving the
model’s performance over time.
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Figure 16. Correlation matrix heatmap

5. Conclusion
The proposed CNN model achieved 99.7% and
88.8% accuracy on the training and testing data
respectively.  The  evident  high  correlation
between  increased  epochs/batches  and
improved accuracy, together with the trend of a
decrease in loss, provided evidence of both, the
model reliability,  and its  potential  for clinical
application. This accuracy is greater than many
of the current models within this domain. The
ability to correctly classify even the most subtle
difference  in  stages  like  the  Very  Mild
Demented stage, renders the model useful for
early  diagnosis.  Another  advantage  of  the
model is that predictive accuracy on different
stages of Alzheimer's disease is well-balanced
(as class imbalance is a common problem faced
by many existent models).

5.1 Limitations and potential improvement
One potential concern was that the model was
trained on only one large dataset,  which may

not  present  with enough variety  found in  the
clinical  setting.  To  increase  the  model's
generalization  capability,  larger  and  more
diverse  datasets  should  be  used  with  images
from  many  more  demographics  and  MRI
machines.  Future  work  might  study  the
integration  of  multiple  modalities,  such  as
genetic, clinical, and other imaging modalities
into  the  proposed  model  for  increased
diagnostic capabilities. Also, while the features
extracted  appeared  relatively  independent  and
diverse,  were  there  to  be  highly  correlated
features (indicated by darker red or blue blocks
in  the  Pearson  Correlation  Heatmap),  those
could potentially  be reduced using techniques
like  Principal  Component  Analysis  (PCA)  to
maximize generalization capability and model
robustness.

Since the model was trained on a locally  run
computer  with  ~  8  GB of  RAM,  the  model
training  took  an  extended  amount  of  time
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compared  to  running  this  same  model  on  a
high-performance  machine  with  greater
memory and GPU capabilities. Ultimately, this
may have resulted as a consequence from the
processing of a very large dataset and complex
computations.

Another  significant  consideration  when
applying  machine  learning  to  MRI images  is
the  variability  in  the  diagnostic  accuracy  of
MRI itself, which typically ranges from 50% to
85%.  This  inherent  variability  may  introduce
some level of error in the ground truth labels
used  for  training  the  model.  Consequently,
even though our model achieves relatively high
accuracy (88.79% in testing), this performance
is constrained by the accuracy of the input data,
and  errors  from  the  human  interpretation  of
MRI  images  may  compound  with  errors
introduced  by  the  model.  To  mitigate  this
effect,  future  work  should  consider  the
integration  of  additional  modalities  (e.g.,
genetic or clinical data) to reduce reliance on
potentially  inaccurate  human  identified  MRI
labels.  Furthermore,  incorporating  uncertainty
quantification techniques in the model can help
indicate  predictions  where  the  model's
confidence is lower due to less reliable human
interpreted input data.

5.2 Clinical applications
Beyond its presented use to classify the stages
of Alzheimer’s disease based on severity,  the
model  could  be  embedded  within  other
diagnostic  tools;  including  cognitive  testing

and  genetic  screening;  to  return  a
comprehensive assessment of the condition of
the patient. This could be done, for example, by
merging the predictions made by the model on
the  basis  of  images  with  data  from  other
modalities  to provide an overall  improvement
in  the  diagnostic  process  through
multidimensionality  of  views  in  disease,  that
may help in treatment strategies.

In addition to direct  clinical  applications,  this
model  could be valuable  in  research settings,
particularly  in  the  development  of  new
treatments  for  Alzheimer’s  disease.  By
providing  a  reliable  means  of  categorizing
disease  stages,  the  model  could  be  used  to
stratify patients in clinical trials, ensuring that
treatments  are  tested  on  and  compared  with
appropriately  matched  patient  groups.  This
could  lead  to  more  accurate  assessments  of
treatment  efficacy  and  accelerate  the
development of new therapies.

Apart from its direct clinical applications, this
model  may  also  be  highly  valuable  in  the
context of neurological research, such as in the
development  of  new  treatments  against
Alzheimer's  disease.  It  would provide a valid
way of classifying the stages of the disease and
thus  distinguish  patients  for  clinical  trials  of
treatments  to  be  tested  on  appropriately
matched  patient  groups,  potentially  allowing
for  more  precise  assessment  of  treatment
efficacy  and  faster  development  of  new
therapies.
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