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Abstract
Reaction simulation utilizing computational methods can save reactant material and reaction 
time, decreasing the cost and time necessary for the mass manufacture of active pharmaceutical 
ingredients (APIs). To simulate the synthesis of APIs, specifically Metoprolol, a route plan and 
reaction model was designed, and a reaction optimization was performed. To create a reaction 
model, kinetic models and reaction simulations were used to calculate the yield at various 
conditions and plotted on a three-dimensional graph. Machine learning algorithms were used to 
determine the optimal parameters that would maximize the yield of Metoprolol. Reaction 
simulation can also be applied to other APIs to improve the design and synthesis process, and the
utilization of this specific methodology can save time and costs in both industrial and academic 
applications.
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Introduction
The synthesis of drug molecules requires many
specific  and  potentially  complex  steps.
Designing a route plan to the product can be
difficult  because  different  transformations  in
the  synthesis  have  different  optimal
parameters.  This  is  a  crucial  process  as
efficient steps can lower production costs and
improve  the  purity  and  yield  of  the  final
product.  Determining  the  optimal  synthetic
steps  enables  the  mass  production  of  APIs,
which is necessary for drug manufacturing (1).
The success of this synthetic process requires
optimization  of  each  synthetic  step  to  ensure
high yields and purity of the product. Reaction
modeling  and  optimization  are  one  way  to
ensure optimal process parameters.

Reaction modeling is essential to understanding
reactions  by  determining  how  changing  an
experiment’s  parameters  affects  its  yield  (2).
Reactions  can  be  simulated  using  kinetic
modeling,  which  utilizes  computational
methods and rate laws to predict  the yield of
chemical  reactions  at  different  reaction
conditions.  This differs from other simulation
methods,  such as  statistical  methods,  as  it  is
based  on  chemical  relationships  and  physio-
chemical  information  instead  of  mathematical
relationships  between  data  values.  Kinetic
modeling  can  therefore  simulate  reactions
quickly and efficiently  outside of the lab and
can  even  simulate  reactions  with  factors
outside  experimental  constraints  which  is  not
possible  using  statistical  methods  (3,4).  This
saves  lab  materials  and  time  as  fewer
experiments  are  necessary to  run,  which also
reduces  costs  for  labs  and  pharmaceutical
companies.

Optimizing  the  synthetic  steps  in  the
formulation of a drug ensures high yields and
purity, which are essential to reduce the cost of
drugs (5). Reaction optimization is possible by
employing  various  techniques,  including  but
not limited to one factor at a time (OFAT) and
design  of  experiments  (DoE).  OFAT
optimization  iteratively  performs  experiments
by controlling all variables except for the one
being optimized (7). However, DoE determines
the yield of a chemical reaction based on all the
factors for that reaction simultaneously. DoE is
more efficient than OFAT optimization since it
creates  predictions  considering  all  factors
allowing  for  better  reaction  prediction  (6,8).
The  empirical  models  can  be  fitted  to  data
gathered  from  experimentation  to  understand
how changing multiple variables affect reaction
output.  These  optimization  techniques  save
time  and money in  the  lab  (7).  Additionally,
optimal  conditions  are  usually  determined  by
extensive  experimentation  in  the  lab,  but  by
computationally  optimizing  reactions,  lab
materials and time are saved, reducing product
costs. 

This paper aims to optimize the final step in the
synthesis  of  Metoprolol,  a  beta  blocker  drug
manufactured  by  AstraZeneca  (2),  by
determining  the  reaction  conditions  necessary
to  deliver  the  highest  product  yield.
Additionally,  a  route  plan  will  be  created  to
demonstrate a viable route to Metoprolol from
simple  starting  materials.  To  optimize  the
reaction,  MATLAB  will  first  be  used  to
simulate  the reaction  at  various  temperatures,
reaction  times,  and  initial  reactant
concentrations. This model will then be used in
conjunction with a machine learning algorithm
to determine the optimal parameters to achieve
the  highest  product  yield.  This  research  will
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determine  what  conditions  will  optimize  the
chemical  synthesis  of  Metoprolol  in  order  to
increase  its  yield.  This  could  lower
manufacturing  costs  for  pharmaceutical
companies and decrease the price of essential
medication for patients. 

Route Plan
The  route  plan  for  Metoprolol  represents  a
series of possible synthetic steps to synthesize
Metoprolol starting from nitrobenzene (Figure
1).  Metoprolol  is  a  beta  blocker  drug
manufactured  by  AstraZeneca  (to  treat

hypertension and angina. Determining a viable
route is  essential  to  optimize  the  reaction,  as
each  transformation  can  be  optimized  to
maximize yield. However, this paper will focus
on the final transformation for which we have
kinetic  data.  Simulating  the  reaction  will
reduce  the  time  spent  in  the  lab  and  money
spent  on reactants,  as fewer experiments  will
be  necessary.  Additionally,  machine  learning
techniques  alongside  reaction  modeling  help
chemists  determine  the  best  yield  possible
without being physically in the lab.

Figure 1. A route plan to Metoprolol from simple, cheap starting materials.
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The  pricing  on  each  transformation  was
determined  using  Sigma  Aldrich  and  for  the
reaction 0.52 mol of each molecule was used to
produce 100g of Metoprolol. The initial cost of
the nitrobenzene starting material is $29.90 per
mol.  The  first  step  of  the  route  plan  uses
Friedel  crafts  alkylation  to  produce  1.2  from
nitrobenzene,  which  would  cost  $134.00  (9).
To make 1.3 from 1.2,  the Williamson Ether
method is used, and the reaction costs $104.76
(10).  Making 1.4  from 1.3  uses  diazotization
and costs $39.46 (11). Next, to synthesize 1.5
starting  from 1.4,  hydration  is  used,  and  the
reaction  costs  $0.58  (12).  To make  1.6  from
1.5,  nucleophilic  substitution  is  used,  and  it
costs  $545.93  (13).  The  last  transformation
results in the synthesis of Metoprolol and costs
$2.90 (14). The total price to synthesize 100g
Metoprolol  using  the  proposed  route  plan  is

$446.77,  assuming  a  100%  yield  for  each
transformation.
 
Reaction Simulation and Modeling
To simulate the final reaction (Figure 2) in the
route  plan  described  previously  yielding
Metoprolol,  a  range  of  initial  conditions  are
inputted  into MATLAB, which uses  ordinary
differential  equations  (ODEs) to  calculate  the
yield  of  the  product.  These  ODEs  are
determined  by  rate  laws  and  take  the  initial
concentration of the reactants as parameters to
determine  the  final  concentrations  of  all  the
compounds  in  the  equations.  The  ODEs  that
represent  the  change  in  concentration  are
highlighted below in equations 1-4. The final
concentration of Metoprolol is then converted
into  a  percentage  based  on  the  initial
concentration of the reactants and displayed on
a three-dimensional graph.

 

Equation1 :
d [1.1 ]

dt
=K (1 ) ∗ [1.1 ] ∗ [1.2 ]−K (2 )∗ [1.1 ] ∗ [1.3 ]

Equation2 :
d [1.2 ]

dt
=−K (1 )∗ [1.1 ] ∗ [1.2 ]

Equation3 :
d [1.3 ]

dt
=K (1 )∗ [1.1 ] ∗ [1.2 ]−K (2 ) ∗ [1.1 ] ∗ [1.3 ]

Equation 4 :
d [1.4 ]

dt
=K (2 ) ∗ [1.1 ] ∗ [1.3 ]
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Figure 2. The final transformation for the synthesis of Metoprolol, as well as the undesired side-product 1.4

The  epoxide  starting  material,  1.1,  has  a
starting concentration varying from one to five
molars.  Each  permutation  of  this  variable  is
individually plotted on the graph to represent
how  changing  this  condition  affects  the
reaction  yield.  The  other  reactant,
isopropylamine (molecule 1.2), has a constant
initial yield of four molars to demonstrate how
the yield of Metoprolol changes as the reactant
equivalents  are  changed.  The  varying
concentrations of molecule 1.1 are represented
by  the  y-axis  on  Figure  3  while  the
concentration of molecule 1.2 is held constant.
The temperature and reaction time varies from
380 to 470 degrees Kelvin and 4 to 22 minutes,
respectively.  These  values  are  used  to
determine the K-value of the reaction using the
re-parameterized  Arrhenius  equation  as  show
in Equation 5. Then the K-value is used in the

ordinary  differential  equations  as  part  of  the
rate law. Each time the temperature or reaction
time changes, a new K-value is calculated, and
the  corresponding  yield  of  Metoprolol  is
determined. The activation energy for the last
step in the reaction is 75,000 kJ/mol (14) . The
final reaction in this route plan is not reversible
so  ODEs  could  be  used  to  determine  yield
without considering equilibrium constants. The
yield is then displayed on a three-dimensional
graph  with  the  parameters  representing  the
location of the dot and the color representing
the yield (Figure 3). Reaction 1 represents the
formation  of  Metoprolol,  molecule  1.3,  from
molecules  1.1  and  1.2  and  Reaction  2
represents  the  formation  of  the  side  product,
molecule 1.4. For each temperature the reaction
has been simulated it, the rate constant K was
calculated (Table 1).

Equation5 :k=kref ∗e
[
−Ea
R (

1
T
−
1
Tref )]
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Table 1. The rate constant for each temperature simulated

Temperature (K)

R
ea

ct
io

n 383.15 393.15 403.15 413.15 423.15 433.15 443.15 453.15 463.15 473.15

1 0.013 0.024 0.041 0.069 0.113 0.182 0.286 0.441 0.668 0.994

2 0.001 0.001 0.003 0.004 0.007 0.012 0.019 0.030 0.046 0.069

The yield experiences a steep decline once the
molarity of molecule 1.1 exceeds four because
the molarity of molecule 1.2 is held constant at
four. If there is an excess of molecule 1.1, it
will  react  further  with Metoprolol  to  produce
molecule 1.4, an unintended side product (see
Figure  2  for  a  diagram of  the  side  reaction).
Limiting  the excess  of molecule  1.1 prevents
this further reaction and therefore increases the
percentage  of  Metoprolol  present  in  the  final
product, increasing its yield. Additionally, the

yield  increases  as  the  reaction  time  increases
since more reaction time increases the number
of collisions, which results in the formation of
more product. However, the temperature is not
optimal at  either extreme as the highest yield
tends  to  be  when  the  temperature  is  in  the
middle  of  both  bounds,  around  430  degrees
Kelvin.  For  this  reaction,  high  temperatures
decrease  reactivity  making  it  necessary  to
create  reaction  models  to  determine  the  ideal
temperature for the synthesis of Metoprolol.

Figure 3. Simulated yield of Metoprolol
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The  ability  to  change  the  kinetic  parameters
and determine hundreds of data points in just a
few  minutes  makes  it  cheaper  to  simulate
reactions rather than run them in a lab, as no
lab  materials  are  necessary.  Additionally,
simulating  reactions  is  faster  than
experimentation as there is no wait time for the
reaction  to  go  to  completion  or  set  up  time
necessary.  The  data  points  collected  from
MATLAB can also be plotted as a two or three
dimensional figure depending on the number of
kinetic parameters making it easy for chemists
to  visualize  the  data  and  determine  which
conditions lead to the most favorable output.

Reaction Optimization
Machine  learning  involves  using  algorithms
and  models  that  can  analyze  and  learn  from
data,  allowing  them  to  recognize  patterns,
make  predictions,  and  improve  their
performance over time. It can optimize black-
box  problems  where  the  algorithm  does  not
understand the underlying chemical  processes
within the optimization procedure. This is why
it  is  sometimes  necessary  to  input  specific
upper  and  lower  bounds  so  that  the
optimization is reasonable and practical. These
optimization  algorithms  can  be  applied  to
chemistry  and  specifically  reaction
optimization to maximize the yield of chemical
reactions.

The genetic  algorithm was used to  determine
the optimal reaction parameters for which the
yield of Metoprolol  is  the highest.  Similar  to
the reaction modeling section, ODEs were used
to  calculate  the  yield  for  the  inputted
parameters  selected  by  the  genetic  algorithm
between  the  lower  and  upper  bounds.  These
bounds  were  the  same  as  the  ranges  for  the
kinetic simulation. The genetic algorithm (was

specifically chosen because other optimization
functions  available  on  MATLAB,  such  as
fminsearch  which  uses  Simplex,  result  in
optimal  parameters  outside  of  the  desired
bounds, which cannot be conducted practically
and safely. The simple genetic algorithm works
in 6 stages: initialization, evaluation, selection,
crossover,  mutation,  and  replacement.  This
process  repeats  until  the  optimal  parameters
have  been  found  which  is  usually  when  the
evaluation  is  not  higher  in  the  succeeding
round.  In  the  selection  stage,  the  highest-
performing  parameters  from  the  evaluation
stage  are  used  to  generate  a  new  set  of
parameters.  Then in the crossover stage, each
variable  has  a  50% chance  of  existing  in  the
new set of parameters. For the mutation stage,
there  is  a  probability  of  a  random  variable
mutating.  These  steps  represent  one  cycle  of
the  genetic  algorithm  which  continues
repeating until the optimum set of parameters
has been reached. For a detailed description of
genetic  algorithm  and  its  other  associated
applications, refer to work by Taylor et al (14).

Optimizing a reaction using machine learning
is  much  more  efficient  than  determining  the
yield for every set of conditions possible and
results  in  more  precise  optimal  condition
identification.  On  a  larger  scale,  machine
learning  optimization  can  determine  the
maximum  yield  with  bounds  that  allow
millions of possible combinations. Running an
experiment for each of these conditions or even
simulating  it  could  take  a  long  time,  but
algorithms  such  as  the  genetic  algorithm  are
able  to  do  the  same process  in  just  minutes.
Computationally optimizing reactions is a more
effective  way  to  determine  the  optimal
parameters  of  a  reaction  compared  to  testing
each set of conditions experimentally.

      Journal of High School Science, 7(3), 2023



Technical note

Conclusion
The  route  plan  proposed  was  a  series  of
possible  transformations  to  synthesize
Metoprolol  from  nitrobenzene.  Using  the
proposed  route  plan,  it  costs  $446.77  to
synthesize  100g  of  Metoprolol.  Creating  this
route  plan  helps  to  determine  a  series  of
possible synthetic transformations that could be
optimized to maximize the yield of Metoprolol.

To  simulate  the  final  transformation  of
Metoprolol,  kinetic  models  and  reaction
simulation  were  used,  and they  proved to be
more  efficient  and  cheaper  than  actual
experimentation.  Reaction  models  determined
the  yield  by  utilizing  ordinary  differential
equations  and  plotted  it  on  a  scatter  plot  to
show  how  different  kinetic  parameters  affect
the  yield  of  Metoprolol.  This  helps  chemists
understand  and  visualize  the  reaction,

particularly how the value of each factor affects
the yield. 

Machine learning algorithms were then used in
tandem with reaction simulation to increase the
efficiency  and  precision  of  the  outputs  and
determine  the  optimal  parameters  that
maximize  the  yield  of  Metoprolol.  This
methodology  saves  the  time  it  would  have
taken  to  simulate  hundreds  of  reactions  and
will also save the reactant material and chemist
time  that  would  have  been  necessary  to  run
these reactions  in the lab.  Optimization using
computational  methods  achieves  the  same
goals  as  experimental  optimization  at  the
fraction of the cost and time; therefore, reaction
simulation in this manner can positively affect
the  design  and  synthesis  of  other  active
pharmaceutical ingredients. 
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