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Abstract                

This research presents an advanced scientific approach using machine learning (ML) models 

with boosting algorithms and a data-driven modeling approach to achieve ~ 98% prediction 

accuracy for credit risk evaluation. The study was conducted using a public, loan-level dataset 

from Freddie Mac for the post-2020 period, and identified multiple credit risk factors that 

influenced the likelihood of loan default. The research examined whether ML boosting 

algorithms, including Gradient Boosting, XGBoost, and Light GBM, outperformed Logistic 

Regression in predictive performance. The paper proposes novel ML-based credit risk algorithms 

to address challenges, including data imbalance, hyperparameter optimization, and robust cross-

validation, to achieve reliable estimation. For comprehensiveness and robustness, model 

performance was evaluated using a suite of key metrics, including accuracy, sensitivity, 

specificity, true and false positive rates, AUC, F1 scores, and ROC analysis. The empirical 

results of the paper demonstrated that ensemble methods consistently achieved superior accuracy 

compared to single-model approaches. The paper found that XGBoost and Light GBM were the 

top performers with 98% accuracy after optimization and 5-fold cross-validation. The findings 

demonstrated that ML models using boosting algorithms, especially XGBoost and Light GBM, 

achieved remarkable accuracy in distinguishing between “good” and “bad” loans compared to 

the traditional logit model, without exhibiting signs of overfitting. By outperforming current 

models for predicting loan defaults, the result carries significant implications for lenders, 

regulators, and policymakers in the financial industry, providing more robust tools for credit risk 

modeling, facilitating the development of FinTech-driven lending solutions, and supporting the 

preservation of financial stability. 
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1 Introduction             

One of the key tasks in risk management for the 

financial sector is to achieve sound credit risk 

assessment. In lending practice, credit scoring 

models are primary tools that financial 

institutions use to assess the creditworthiness of 

borrowers, estimate the likelihood of borrower 

default, manage lending risks effectively, and 

make prudent investments (1). Among different 

types of loans, mortgage loans pose a 

particularly significant risk due to their large 

values and long terms for repayment. As a 

result, to mitigate credit risks and resulting 

losses due to mortgage loan defaults, it is 

essential for banks and financial institutions to 

develop accurate predictive models.  

Understanding and accurately predicting 

mortgage loan defaults is essential not only for 

minimizing credit losses among lenders but also 

for promoting broader macroeconomic stability. 

Rising default rates, especially widespread 

subprime mortgage defaults, can lead to a series 

of financial disruptions, as demonstrated during 

the 2008 global financial crisis (2). Advancing 

credit scoring models remains a critical focus of 

both academic research and financial risk 

management in the financial sector.  

In the United States, the increased availability 

of consumer financial data and the need for 

increased risk management systems have led to 

the evolution of credit scoring systems from 

traditional statistical methods, which have been 

widely adopted due to their ease of 

interpretation and regulatory acceptance (3), to 

artificial intelligence (AI) or machine learning 

(ML) credit scoring models (4, 5). The use of 

statistical and AI/ML-based credit scoring 

systems has grown rapidly in response to the 

increasing availability of consumer financial 

data and the need for more robust risk. ML 

models can handle a large data of borrower 

behavior, loan characteristics, and risk profiles 

efficiently, and learn different patterns and 

relationships in the data to build more accurate 

models than traditional credit scoring models 

(4). 

Given the dynamic nature of the economy and 

more complex borrowers’ behavior, it is 

essential for risk assessment models to remain 

adaptive, continually updating their algorithms 

to reflect new data and emerging insights. It is 

necessary to evolve from standard credit scoring 

procedures to more sophisticated, data-driven 

methodologies that incorporate ML and 

advanced predictive analytics.  

To achieve the goal of developing highly 

predictive models for credit scoring assessment, 

this research collected Freddie Mac loan-level 

data with more than 100,000 loans, including a 

rich set of characteristics of borrowers, loan 

records, macroeconomic factors, and property 

factors that could have a potential impact on the 

repayment of mortgage loans. Recent 

advancements in ML have introduced more 

flexible and potentially more accurate credit 

scoring models, such as gradient boosting and 

ensemble methods, which can capture complex 

nonlinear relationships in the data (4, 5). Hence, 

this paper explored ML boosting algorithms to 

enhance the prediction accuracy for mortgage 

default models, and to create efficient early 

warning systems to reduce credit risks and 

losses. Having accurate mortgage default 

models is crucial because it helps mortgage 

lenders remain competitive by managing risk 

efficiently and pricing the portfolios effectively. 

It also helps regulators monitor financial 

stability, make timely and effective decisions or 

interventions, and create sound lending 

practices in the finance sector.  
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To help lenders, financial investors, and 

professionals make proactively well-informed 

decisions; this research presents a novel 

approach to successfully predict loan defaults in 

the U.S. housing market. The main objective of 

this analysis was to examine if ML boosting 

algorithms could be used to predict loan 

defaults. The key hypothesis was that ML 

boosting algorithms could offer higher 

prediction accuracy than traditional Logistic 

Regression [logit] in predicting mortgage loan 

defaults. The results of the paper show that all 

the boosting algorithms showed improvement in 

prediction compared to the Logistic Regression. 

The study found that ML models using boosting 

algorithms, especially XGBoost and Light 

GBM, demonstrated superior performance 

compared to the traditional logit model in 

distinguishing between “good” and “bad” loans.  

The outline of the rest of the paper includes five 

sections. Section 2 presents data overview, data 

preprocessing, feature selection, extraction, and 

correlation analysis. Section 3 discusses ML 

methodology and presents the three ML 

boosting algorithms, including Gradient 

Boosting, XGBoost, and Light GBM, in 

comparison with Logistic Regression. Section 4 

discusses how the ML models were constructed, 

optimized with hyper-parameter tuning and 

evaluated. Section 5 shows the results and the 

discussion of the results. The last section 

concludes the study. 

2 Data 

2.1 Data overview  

To achieve the goal of developing accurate 

mortgage loan default models, the study 

employed a large dataset of mortgage loans 

originated in 2020, with loan performance 

observed up to September 2023. The data 

consisted of more than 100,000 loans, which 

were mostly 30-year fixed-rate mortgages and 

extracted from Freddie Mac’s public loan-level 

data (6). The dependent variable was Mortgage 

loan default status, which was defined as 1 if the 

mortgage loan defaulted with missing payments 

for at least 6 months, and 0 otherwise. Mortgage 

loan delinquencies were cleaned and added to 

the loan-level dataset. After cleaning the data, 

the data contained ~ 10.5% loan defaults (N = 

10,867), and the rest being loans that were 

repaid on schedule or paid in full or missing 

payments for less than 6 months (N = 92,732). 

The data consisted of 18 independent variables, 

including loan, borrower, and property 

characteristics. Other features, such as 

macroeconomic data including unemployment 

rates and inflation rates, were also added to the 

data based on geographical location and 

individual loan performance.  

2.2 Data preprocessing  

To mitigate the challenge of class imbalance 

between the default and non-default loans 

(10.5% vs. 89.5%), a stratified data partition 

was used. To further balance the dataset and 

ensure equal representation of “good” and 

“bad” loans in the training and testing datasets, 

the Synthetic Minority Oversampling 

Technique (SMOTE) was applied to 

synthetically increase the minority class, in 

combination with under-sampling the majority 

class. Specifically, for each minority instance, 

SMOTE identifies its k nearest neighbors, 

randomly selects one neighbor to gather a 

synthetic sample; this process is repeated until 

the minority class reaches the desired level of 

representation relative to the majority class (7).  
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SMOTE addresses class imbalance by creating 

synthetic minority samples using an 

interpolation approach, which helps mitigate 

overfitting that can result from merely 

duplicating minority observations. As a result of 

applying SMOTE to increase the minority class 

and under-sampling the majority class, the final 

balanced dataset of more than 65,000 loans 

achieved an equal distribution of 50% loan 

defaults and 50% non-default loans across both 

training and testing data. 

To fill in missing values, only for the Current 

Unpaid Balance (CUPB) and the Current Loan-

to-Value (CLTV), the mean imputation process 

was implemented. However, the missing rate 

was negligible at 0.06%. After data 

preprocessing was completed, variable 

constructions, feature selection, and exploratory 

data analysis of mortgage loans were 

performed. Feature selection was used to 

identify relevant variables for model 

construction. Correlation analysis and recursive 

feature extraction were performed 

simultaneously to search for features that 

significantly improved the predictions of 

mortgage loan defaults. The data was cleaned, 

balanced, preprocessed, and analyzed using R 

and Python. 

2.3 Feature Extraction  

Freddie Mac data was used in this paper to 

predict mortgage loan defaults because it has a 

rich set of features of borrower, loan, and 

property characteristics that are consistent with 

previous work related to credit risk assessment 

(8). The data has a comprehensive set of 

features, including Credit score (FICO), CLTV, 

CUPB, origination rates, difference between 

origination and current interest rates, loan 

purpose, origination quarters, and loan age. 

Loan age refers to the elapsed time since loan 

origination up to September 2023 or until the 

time the loans were tracked, or until the payoff 

date (in the case that loans were paid off), 

whichever came first. Notably, loan age is not 

the number of months until default or until the 

time loans missed payments for 6 months. 

Borrower and property features included 

whether a borrower was a first-time home 

buyer, and whether properties were single-

family homes or owner-occupied.   

FICO is a strong indicator of borrowers’ past 

credit behavior in making scheduled payments 

(9, 10), thus FICO was chosen as a predictive 

variable in identifying potential mortgage 

defaults.  High CLTV is associated with high 

default risks since a high CLTV limits borrower 

equity and reduces incentive to make payments 

if property values decline (11). As demonstrated 

during housing market downturns, borrowers 

who had high CLTV strategically defaulted due 

to declining house prices and home equity. 

Higher mortgage interest rates correlate with 

higher default risks because high interest rates 

cause payment burdens and instability (12). 

Higher unpaid balances (CUPB) also imply 

higher loan amounts, resulting in increases in 

default probabilities and financial risks, 

especially during economic recession (13).  

2.4 Correlation analysis            

Correlation analysis is a core step to examine 

the relationship between borrower or loan 

characteristics and default behavior. This step is 

crucial in selecting appropriate features for 

developing accurate mortgage loan default 

prediction models.  
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A correlation heatmap was produced to help 

visualize the pairwise correlations among 

variables in the dataset (see Figure 1). A 

correlation value of 1 or -1 is a perfectly positive 

or negative correlation, whereas a correlation 

value of 0 implies no correlation. The 

correlation analysis and heatmap were 

constructed in Python using several Python 

libraries for data analysis and visualization. 

Specifically, the correlation matrix was 

generated using df.corr(), and visualized with 

seaborn.heatmap, while matplotlib.pyplot was 

used for plotting.  

 

 

Figure 1. Correlation heat map between default status and other characteristics. 

Table 1. VIF values for all features. 

 

Variable  FICO CLTV CUPB ORG_RATE LOAN.AGE DRATE Otherprop PUD Investment Purchase NonCORefi UNRATE Inflation 

VIF 1.16 2.36 1.13 1.42 2.79 1.06 1.04 1.06 1.17 1.79 1.82 2.79 2.15 

 

 

The correlation heat map provides an effective 

way to visualize the directions and strength of 

relationships between default behavior and 

other features, as well as across features in the 

dataset. The directions of relationships between 

default behavior and other features were as 

expected. For example, default behavior was 

negatively correlated with higher FICO and 

positively correlated with CLTV and 

origination interest rates. This indicated that 

these loan, borrower characteristics, and 

macroeconomic factors were meaningful in 

classifying default behavior. It was also 

anticipated that the correlation values would be 

low because a Pearson correlation measures a 

linear relationship, and it cannot capture well 

the non-linear correlation between a binary 

default status and other features. ML models are 

better equipped mathematically to capture those 

non-linear relationships. 
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While some features showed moderately strong 

correlations (i.e., loan age and CLTV), this did 

not necessarily imply multicollinearity. Table 1 

presents the variance inflation factor (VIF) 

values for each feature. All VIF values were < 

5, indicating that there were no multicollinearity 

challenges, thereby ensuring optimal model 

performance and model evaluation.   

3 Methods               

ML is a scientific discipline focused on 

developing mathematical algorithms and 

statistical models that improve performance. 

The science of ML is closely connected to 

computational statistics, which facilitates more 

accurate predictions through a data-driven 

approach. ML allows for the identification of 

data patterns, insights, and valuable 

relationships in large datasets (14-16). Rather 

than relying on explicit programming, ML 

algorithms construct mathematical models from 

training data to make predictions on the testing 

data. Integrating ML algorithms into credit risk 

assessment plays an important role in predicting 

mortgage loan default accurately because it 

helps make a significant business impact in the 

real-world financial sector for large banks, 

mortgage lenders, financial regulators, 

investors, and policymakers.  

To predict the probability of mortgage loan 

defaults, this study included three ML boosting 

methods as building blocks of tree-based 

classification techniques (17). Boosting 

algorithms rely on dependent ensembles, 

iteratively adding trained base models to reduce 

the misclassification of the current ensemble, 

which helps provide significantly better 

predictions than a single classifier in credit risk 

assessment (18). This section provides the 

detailed method of each boosting algorithm 

among Gradient Boosting, LightGBM, and 

XGBoost in comparison with Logistic 

Regression.  

3.1 Gradient Boosting (GB) algorithm 

Gradient Boosting is an algorithm that trains 

models to iteratively learn from previous errors 

and develops a more accurate model through 

ensemble techniques (19). The objective of the 

GB process is to minimize the residuals 

iteratively via a loss function and add new 

predictions until the final model has the highest 

accuracy. GB starts with an initial value (often 

the mean of the target variable) and generates a 

prediction for the first iteration. From there, the 

Gradient Boosting Model (GBM) makes 

predictions by gradually improving its estimate 

using residuals from the previous iterations. GB 

scales the estimate from the previous prediction 

using a learning rate and combines the 

predictions. Over several iterations, it can learn 

from its previous mistakes and thus obtain better 

predictions. GB uses a decision tree as the base 

leaner; however, it ensembles “weak learners” 

to learn the misclassification from each tree and 

add newly trained trees to reduce errors and 

decrease the overall loss. GBM shows the 

potential in classifying mortgage loan defaults 

due to its advantage of capturing non-linear and 

complex data patterns.  

 

3.2 Light Gradient Boosting Machine 

(LightGBM) algorithm 

LightGBM is an efficient and scalable boosting 

algorithm that uses histogram-based binning 

and a leaf-wise system to process large datasets 

with multiple features (20). LightGBM grows 

trees leaf-wise instead of level-wise like normal 

boosting algorithms. With the leaf-wise 

mechanism, Light GBM selects the leaf to be 

split with the maximum loss reduction. 

Therefore, this strategy allows trees to grow 

deeper, leading to the potential for increased 

accuracy. 
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This is especially true in binary classification 

problems. LightGBM also offers histogram-

based feature binning. This reduces memory 

requirements and significantly increases the 

speed of computation. 

 

The Gradient Boosting algorithm is divided into 

the following steps (19). Step 1 minimizes the 

loss function, given by 

𝐺(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ∑ 𝐿(𝑦𝑖 , 𝜃)
𝑛
𝑖=1   (eq 1), where 𝑦𝑖 

is the true value, and the loss function 𝐿(𝑦𝑖 , 𝜃). 

Step 2 computes the residuals or the negative 

gradient of the loss function.  

Step 3 fits a base learner and trains a decision 

tree on the residuals. Step 4 updates the model 

using the learning rate, given by      

𝐺(𝑥)𝑛 = 𝐺(𝑥)𝑛−1 + 𝜃𝑛𝑇(𝑥𝑖; 𝛼𝑛) (eq 2). Finally, 

Step 5 iteratively minimizes the loss function by 

adding newly trained trees to correct the 

residuals from previous trees. The recursive 

model is run until the convergence conditions 

are met.  

The Light GBM’s objective function is given by 

(20),  𝐿(𝑡) = ∑ 𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡)
𝑛
𝑖=1   

(eq 3). where 𝑙 is the loss function in which 𝑦𝑖 is 

the actual default status and 𝑦i is the predicted 

default status; 𝛺(𝑓𝑡) is the additional 

regularization term to eliminate overfitting and 

model complexity. The Light GBM algorithm 

includes the following steps (20). Step 1 

minimizes the regularized loss using the 

second-order Taylor series as the equation, 

𝐿(𝑡) ≈ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡(𝑥𝑖)

2] + 𝛺(𝑓𝑡)
𝑛
𝑖=1  

(eq4), where 𝑔𝑖 and ℎ𝑖 are first and second 

derivatives or Gradients and Hessians matrix, 

respectively. Step 2 computes the first and 

second derivatives, using both the Gradients and 

Hessians matrices. Step 3 uses histogram-based 

binning to increase computation speed. Features 

are binned into buckets to reduce computational 

time. Step 4 uses Leaf-Wise Tree Growth. 

LightGBM grows trees by splitting the leaf with 

the maximum loss reduction, which results in 

more accurate prediction. Finally, in Step 5 a 

tree is added to the ensemble and the model is 

updated iteratively.  

LightGBM was developed based on using two 

key features: Gradient-based One-Side 

Sampling (GOSS) and Exclusive Feature 

Bundling (EFB). Effectively, GOSS enables 

LightGBM to focus more on larger gradients 

(often misclassified samples), leading to 

improved performance in binary classifications. 

The leaf-wise ability is prone to overfitting 

(particularly for smaller datasets) but can be 

mitigated through hyper-parameter tuning: max 

depth and minimum data, among other 

parameters. LightGBM is popular in the 

financial industry because it can achieve 

efficiency and prediction accuracy while 

reducing computational time significantly. 

3.3 Extreme Gradient Boosting (XGBoost) 

algorithm 

Extreme Gradient Boosting (XGBoost) is a 

supervised machine learning algorithm that 

ensembles classification trees with a scalable 

and regularized variant of Gradient Boosting 

Machines (21). It provides parallel tree boosting 

that offers high performance, time efficiency, 

and scalability. XGBoost expands upon the 

standard framework by considering a second-

order Taylor approximation of the loss function 

and both first and second derivatives (i.e., 

Gradient and Hessian) for function 

optimization.  

 



Original article 

 

Journal of High School Science, 9(3), 2025  619 

XGBoost provides stable improvements 

through learning at each iteration and handling 

non-concavity efficiently to achieve refined 

performance. The main advantage of XGBoost 

is its capability to regulate model complexity 

and prevent overfitting using regularization 

techniques. XGBoost incorporates additional 

improvements, such as a) column block store to 

allow parallel computation, b) sparsity-aware 

algorithms to effectively handle missing values, 

and c) loss-based tree pruning to increase model 

performance. Overall, these optimizations help 

XGBoost outperform many established 

machine learning algorithms, offering high 

accuracy and fast performance. 

XGBoost offers the best performance in many 

cases due to its advanced boosting techniques 

and regularization, though it requires careful 

parameter tuning to avoid overfitting. XGBoost 

also combines weak learners to create a strong 

predictive model. It has acquired a reputation as 

being one of the fastest gradient boosting 

algorithms. XGBoost mitigates the inefficiency 

due to evaluating losses of all possible splits by 

examining the distribution of features across all 

data points in a leaf, thereby narrowing the 

search space for potential splits. This 

inefficiency is further alleviated when the 

number of inputs increases in a large dataset. 

XGBoost’s speed is its most advantageous 

feature. This rapid performance allows for the 

efficient exploration of numerous 

hyperparameter settings, which is essential 

given the large number of hyperparameters that 

require tuning. Most of these hyperparameters 

are aimed at preventing overfitting, as 

combining thousands of base models can easily 

lead to overfitting despite their simplicity. 

XGBoost minimizes a regularized loss, making 

it robust to overfitting. Based on its desired 

advantages, XGBoost has been used extensively 

in credit risk modeling for commercial banks to 

provide accurate loan default predictions. 

The XGBoost’s objective function is given by 

(21),  𝑋𝐺𝐵 = ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))
𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑘)

𝑡
𝑘=1   (eq 

5), where  𝛺(𝑓𝑘) is the regularization term at the 

kth iteration, which is expressed as the 

following,  𝛺(𝑓𝑘) = 𝛽𝑇 +
1

2
𝜌∑ 𝑤𝑗

2𝐽
𝑗=1   (eq 6), 

where 𝛽 is the complexity of leaves, T is the 

number of leaves, 𝜌 denotes the penalty 

parameter, and 𝑤𝑗 is the weight of each leaf node 

j.  

The objective function for XGBoost is similar 

to LightGBM but the two models are different 

in terms of efficiency techniques and the tree 

building method. XGBoost grows trees level-

wise and uses continuous features instead of 

binning features.  

The XGBoost algorithm includes the following 

steps (21). Step 1 minimizes regularized Loss 

using second-order Taylor series as,         

𝐿(𝑡) ≈ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡(𝑥𝑖)

2] + 𝛺(𝑓𝑡)
𝑛
𝑖=1  

(eq7), where 𝑔𝑖 and ℎ𝑖 are the first and second 

derivatives, represented by the Gradients and 

Hessians matrices respectively. Step 2 

computes the first and second derivatives, using 

both the Gradients and Hessians matrices. Step 

3 fits a tree to Gradient Statistics, and maps 

inputs to values that minimize the loss function. 

Step 4 computes the optimal leaf weights and 

finally Step 5 adds a tree to the ensemble and 

updates the model iteratively. Overall, with the 

introduction of regularization terms, XGBoost 

is more effective at preventing overfitting while 

achieving better prediction performance. 
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3.4 Logistic Regression (LR) 

Traditional credit scoring models utilize logit 

models, as binary classification models (3, 22). 

The probability of default status is modeled 

using a sigmoid function (see equation 8). The 

log-odds of default are expressed as a linear 

combination of borrower characteristics (X) and 

their corresponding coefficients (β) (see 

equation 9).    𝑃(𝑌𝑖 = 1) =
𝑒𝑋𝛽

1+𝑒𝑋𝛽
  (eq 8) 

𝑙𝑜𝑔 (
𝑃(𝑌𝑖=1)

1−𝑃(𝑌𝑖=1)
) = 𝑋𝛽  (eq 9)., where 𝑋𝛽 = 𝛽0 +

𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽3𝑋3 + 𝑒 . 

 

Even though the logit model results can be 

interpreted intuitively, linearity and 

independence assumptions are strong model 

assumptions. Boosting algorithms offer a more 

flexible and powerful framework that can 

capture complex, nonlinear relationships in 

high-dimensional datasets of rich borrower, 

loan, and property characteristics (4, 18). This 

makes ML boosting algorithms especially more 

innovative, accurate, and informative in credit 

decisions in practice. 

4 Building mortgage loan default models 

4.1 Data modeling and cross-validation 

The data modeling process with the ML 

boosting algorithms in this paper was structured 

as shown in Figure 2.  

 

 

Figure 2. Mortgage loan default data modeling diagram. 

The balanced data was stratified split into 80% 

for training and 20% for testing using the 

Python train_test_split function. The data 

modeling process also employed Python 

libraries, including Scikit-Learn, to perform 

data preprocessing and model evaluation. The 

training data was used to train the model, and 

the final trained model was applied to the testing 

data to obtain predictions of mortgage loan 

defaults. 

4.1.1 K-fold validations              

K-fold cross-validation is a resampling 

technique for evaluating the generalizability and 

robustness of predictive models. The key 

benefit of cross-validation methods is to 

evaluate model performance on new data. One 

of its benefits is to reduce the overfitting risk 

that often arises in the presence of high-

dimensional or noisy datasets. Using this 

approach, the training data were randomly 

partitioned into K equal subsets, or “5 folds”. In 

each iteration, (K -1) folds (i.e., four folds in 5-

fold cross-validation) were used to train the 

model, while the remaining fold was held out 

for validation. 
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This process was repeated K times. The results 

from all iterations were ultimately averaged to 

produce an overall estimate of the model. A 5-

fold cross-validation procedure was employed 

to evaluate all four classification models in this 

study. The 5-fold approach provides a balance 

between computational efficiency and reliable 

performance estimation. 

Four classification algorithms, including 

Logistic Regression and the three boosting 

algorithms: Gradient Boosting, XGBoost, and 

LightGBM, were used to train the predictive 

models. The entire calculation process was 

performed in R and Python. R libraries with 

xgboost, lightgbm, and gbm packages were used 

for ML Boosting algorithm implementation. 

Supporting libraries, such as caret for model 

evaluation and ggplot2 for visualization, were 

also applied throughout the analysis. The 

Python’s Scikit-Learn, Gradient Boosting, 

XGBoost, and LightGBM libraries, 

respectively, were also employed in this 

analysis. Python’s Scikit-Learn is the primary 

ML library. In addition, the Python package 

Matplotlib was used to perform data distribution 

analysis for multiple features. The paper also 

employed other libraries, including the NumPy 

library for working with matrices and math 

operations, the SciPy library for scientific and 

technical computing, the Matplotlib library for 

data visualization, and the Pandas library for 

data handling, manipulation, and analysis. 

4.2 Feature importance       

Feature Engineering (FE) is a valuable tool in 

ML to identify those features that contribute the 

most to model predictions.  FE enhances model 

interpretability, supports feature selection by 

giving the influential size of each predictor so 

that key drivers of outcomes can be recognized, 

trained, and used for improving model 

accuracy. 

After feature extraction and selection, the 

boosting models were fitted based on the 

training set. The test set was adopted to evaluate 

model performances across boosting models 

and LR. Hyper-parameter tuning was applied to 

examine whether model performance improved 

and to obtain optimal performance. The last 

stage was to compare the performance of these 

models before and after optimization; followed 

by the determination of the optimal model and 

its deployment. 

 

Table 2. Hyper-parameter optimization of the boosting algorithms. 

Hyper-parameters Description Ranges of Parameters Optimal 

Value 

Learning Rate Shrinking coefficient of each tree  0.001, 0.01, 0.05, 0.1, 0.5 0.1 

Max Depth Maximum depth from the root to the leaf of 

a tree. 

3, 5, 9, 11, 15, 19 9 

Number of leaves Number of leaves for each tree 15, 20, 30, 40 30 

Max Features Proportion of randomly selected features 

each iteration 

0.5, 1 1 

Sample split The subsample rate of features for every 

split each tree 

0.1, 1 1 

Number of estimators The highest number of base learners 100, 500, and 1000 1000 
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4.3 Hyper-parameter optimization           

The performance of boosting algorithms 

depends on tuning the hyper-parameters to 

achieve superior performance (23). The hyper-

parameters that contributed most significantly 

to the robustness and accuracy of the model 

were the number of estimators, learning rate, 

max features, max depth, min samples split, min 

samples leaf for Light GBM; in addition to 

min_child_weight, and colsample_by_tree for 

XGBoost.  

 

Table 2 shows the hyper-parameters that were 

tuned during the optimization process of the 

boosting algorithms. The learning rate controls 

the contribution of each individual tree to the 

overall ensemble by shrinking the weights 

assigned at each boosting step. A lower learning 

rate typically enhances model robustness, 

reduces the risk of overfitting; however, 

excessively small values can lead to under-

fitting and long training time. Conversely, a 

high learning rate may speed up convergence 

but can increase the risk of overfitting. A higher 

number of estimators is associated with the 

better model performance. However, the higher 

number of estimators can increase computation 

cost and cause model complexity. Deeper trees 

can capture complex nonlinear patterns, but 

they may also over-fit the training data, whereas 

shallower trees may underfit. Higher values of 

the maximum number of features increases 

correlation between trees in the ensemble, may 

encounter over-fitting, while lower values 

introduce more randomness, helping to reduce 

inter-tree correlation and enhance 

generalization. The sample split serves as a 

regularization parameter, preventing the model 

from learning spurious patterns when set at 

higher values. 

 

Overall, these hyper-parameters define the 

trade-offs between learning speed, accuracy, 

variance, and computational efficiency. If the 

value of the parameter is set too low, there might 

be an underfit prediction. In contrast, if the 

value of the parameter is set too high, the 

computation costs increase. The lower values 

may alleviate the over-fitting challenge while 

the higher values may cause under-fitting. Thus, 

optimal tuning is essential to ensure that the 

boosting algorithm generalizes well across new 

and unseen data. After optimization, the last 

column in Table 2 shows the final results of 

selected parameters that balanced between 

prediction accuracy, overfitting, and 

computational time. 

 

4.4 Model performance evaluation 

In this research, credit scoring machine learning 

models were evaluated based on four machine 

learning algorithms: Logistic Regression, 

Gradient Boosting, LightGBM, and XGBoost, 

using the results from both training and testing 

data. Model performance evaluation across ML 

boosting models and LR was performed for both 

the training and the testing datasets. In order to 

assess whether the model was overfitting, it is 

important to compare testing accuracy with 

training accuracy across models to see if 

extremely poor performance in testing data 

occurs. Table 3 presents model performance 

metrics used to evaluate the accuracy of ML 

boosting prediction algorithms  compared to the 

Logistic Regression model. Each of the metrics 

is specified with its associated formula and 

description in the table. 
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Table 3. Model performance metrics. 

Metric Description Mathematical Formula 

ACC Accuracy 𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)⁄  

SEN Sensitivity 𝑆𝐸𝑁 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  

SPE Specificity 𝑆𝑃𝐸 = 𝑇𝑁 (𝐹𝑃 + 𝑇𝑁)⁄  

TPR True positive rate  𝑇𝑃𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  

FPR False positive rate 𝐹𝑃𝑅 = 𝐹𝑃 (𝐹𝑃 + 𝑇𝑁)⁄  

F1  F1 Score 𝐹1 = 2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄  

AUC Area under the curve 𝐴𝑈𝐶 = (1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅) 2⁄  

4.4.1 Accuracy     

Accuracy refers to the overall correctly 

predicted probabilities of both positive and 

negative outcomes (defaults and non-defaults). 

In credit risk assessment, a higher accuracy 

implies a higher share of correct classification 

of loan defaults and loan repayments relative to 

the total number of loans in the sample. 

4.4.2 Confusion Matrix and ROC            

The confusion matrix serves as a basic statistical 

tool for classifying a binary outcome, which can 

be used to determine the accuracy of ML models 

that predict loan default statuses. A confusion 

matrix is used to compare the prediction to the 

actual default and evaluate if “good” or “bad” 

loans are predicted correctly. The four cells in 

the confusion matrix represent True Positives 

(TP), False Positives (FP), True Negatives 

(TN), and False Negatives (FN). Within this 

table, two important performance measures are 

contained with relation to the confusion matrix, 

the true positive rate (TPR) and false positive 

rate (FPR). The TPR and FPR are two key 

metrics in forming the Receiver Operating 

Characteristic (ROC) curve (24).  

TPR represents the ratio of actual positive 

observations, such as loans that defaulted, that 

were correctly identified by the model. This is 

also known as recall or sensitivity and describes 

the model’s ability to correctly detect loan 

defaults out of all actual defaults. Meanwhile, 

FPR is the proportion of actual negative 

outcomes, such as loans that did not default and 

loans that were incorrectly identified as 

defaults. This measure indicates the extent to 

which the model creates false alarms by 

identifying repaid loans as defaulted loans. 

Sensitivity measures the model’s ability to 

correctly identify actual defaults (TP), while 

specificity reflects its ability to correctly 

identify repaid loans (TN). The Recall metric is 

calculated in the same way as Sensitivity or 

TPR. Precision is calculated as TP/(FP + TP). 

Using only precision or recall does not 

completely capture the prediction accuracy of 

various models in terms of ranking. Therefore, 

as a harmonic mean between Recall and 

Precision, F1 Score is used as another metric to 

rank the model accuracy across ML models. 

 

 



Original article 

 

Journal of High School Science, 9(3), 2025  624 

The Area under the ROC Curve (AUC) 

indicates how well a model can distinguish 

between positive and negative outcomes (e.g., 

“bad” and “good” loans). A larger AUC value 

indicates that the model is better at predicting 

mortgage loan defaults across a range of 

classification thresholds. On the other hand, 

AUC values that approach 0.5 indicate a poor 

level of discrimination or that the model’s 

predictions are no better than random guesses. 

Finally, AUC values that approach 1.0 have 

better predictive power. While ROC tends to 

show the trade-off between the TPR and FPR at 

multiple thresholds, AUC serves as a key 

overall measurement statistic of the model’s 

classification accuracy. 

5 Results and discussion 

In this research, credit scoring machine learning 

models were evaluated based on four machine 

learning algorithms: Logistic Regression, 

Gradient Boosting, LightGBM, and XGBoost, 

using the results from both training and testing 

data. Performance evaluation metrics include 

Accuracy, AUC, F1 Score, Sensitivity and 

Specificity, TPR and FPR, or ROC. The 

prediction results after optimization showed that 

XGBoost and Light GBM outperformed the 

results from Logistic Regression, and Gradient 

Boosting. XGBoost and Light GBM were the 

best models after optimization, achieving 98% 

accuracy on both the training and testing data. 

5.1 Results from Feature Importance      

Feature Importance analysis found consistent 

patterns across the three boosting models  

(Figure 3). The top predictors of mortgage loan 

default from the GBM were loan age, CLTV, 

CUPB, origination interest rates, FICO, and 

unemployment rate. In the LightGBM model, 

CLTV ranked highest, followed by loan age, 

unemployment rate, CUPB, origination rates, 

and FICO, in addition to inflation rates. 

Similarly, the XGBoost model also ranked 

CLTV as the top predictor, followed by loan 

age, CUPB, unemployment rates, FICO, 

inflation, and origination interest rates as the 

most influential variables. These results 

suggested that creditworthiness indicators 

remained the most significant predictors of loan 

default across the different boosting techniques. 

 

 

Figure 3. Feature Importance in mortgage loan default modeling. 
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5.2 Results from confusion matrix     

A confusion matrix is a standard statistical tool 

to validate the correctly predicted loan defaults 

against actual loan defaults for the classification 

model. The matrix contains four quadrants: true 

positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN). A 

higher total of TP and TN is associated with a 

higher model accuracy.  

Figure 4 shows the comparison of the confusion 

matrix for four ML models, indicating that 

Light GBM and XGBoost were the best models 

with accurate predictions of loan defaults (i.e., 

more than 6400 loans). Both TP and TN for 

Light GBM and XGBoost were significantly 

greater than those for Logistic Regression and 

GBM, based on the prediction results of the 

testing data after optimization. 

Based on the confusion matrix, classification 

performance could be further assessed using F1 

Score, sensitivity (TPR) and specificity (TNR), 

TPR and FPR on the testing data. Among the 

four models: Logistic Regression, GBM, 

LightGBM, and XGBoost, XGBoost achieved 

the highest F1 Score (0.982) in the testing data, 

indicating a better balance between precision 

and recall (see Table 4). LightGBM achieved an 

F1 Score of 0.981, indicating performance close 

to that of XGBoost. Followed by XGBoost and 

LightGBM, GBM and LR presented with 

significantly lower F1 Scores of 0.757 and 

0.685, respectively. 

XGBoost achieved the highest specificity 

(0.983), whereas LightGBM obtained the 

highest sensitivity (0.981) in the testing data. 

This suggested that XGBoost was slightly better 

suited for minimizing FP (112 loans), whereas 

LightGBM performed slightly better in 

minimizing FN (125 loans). Both XGBoost and 

LightGBM achieved specificity and sensitivity 

~ 98%, indicating they were most effective in 

measuring the probability of loan defaults and 

non-defaults correctly among the four models.  

Followed XGBoost and LightGBM, GBM and 

LR presented with lower specificities (0.742 

and 0.656 respectively), indicating weaker 

performance in identifying non-default loans. 

GBM and LR also presented with lower 

sensitivities (0.805 and 0.7 respectively), 

demonstrated by a significant amount of FN in 

the confusion matrix (1278 and 1967 loans that 

were misclassified as non-defaults). Due to their 

limitations in capturing nonlinearity and special 

data patterns in a large data, GBM and LR had 

lower F1 scores, sensitivity and specificity than 

XGBoost and LightGBM.   

The results also indicated that XGBoost and 

LightGBM yielded the highest accuracy or the 

lowest error with TPR of 98% and FPR of ~ 2%, 

indicating that XGBoost and LightGBM were 

the top performers in classifying loan defaults. 

Following XGBoost and LightGBM was GBM 

with a TPR of 0.805 and FPR of 0.258. LR had 

the lowest TPR of 0.7 and the highest FPR of 

0.345, indicating the weakest performance 

among the four models. 
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Figure 4. Comparison of confusion matrix for four ML models: Logistic Regression, Gradient Boosting, Light 

GBM and XGBoost – testing data. 

 

5.3 Accuracy              

The results from Table 4 indicate that XGBoost 

achieved the highest accuracy on both training 

and testing data (98.2%). In addition, both 

XGBoost and LightGBM  performed better on 

the training data and testing data after hyper-

parameter tuning optimization. Specifically, 

XGBoost achieved 98.2% accuracy and 

LightGBM achieved 98.1% accuracy on the 

testing data. Meanwhile, GBM and LR had 

relatively lower accuracy rates (76% and 68%, 

respectively) compared to XGBoost and 

LightGBM in the testing data.  

 

Table 4. Model performance results for LR, GB, LightGBM and XGBoost ML algorithms.   

Model Logistic Regression Gradient Boosting Light GBM XGBoost 

Metrics Training Testing Training Testing Training Testing Training Testing 

Accuracy 0.665 0.678 0.756 0.774 0.981 0.981 0.982 0.982 

AUC 0.665 0.678 0.756 0.774 0.981 0.981 0.982 0.982 

F1 Score 0.669 0.685 0.758 0.781 0.981 0.981 0.982 0.982 

Sensitivity 0.676 0.700 0.766 0.805 0.979 0.981 0.980 0.980 

Specificity 0.655 0.656 0.745 0.742 0.982 0.981 0.983 0.983 

TPR 0.676 0.700 0.766 0.805 0.979 0.981 0.980 0.980 

FPR 0.345 0.345 0.255 0.258 0.018 0.019 0.017 0.017 
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XGBoost performed slightly better than 

LightGBM in terms of accuracy, AUC, F1 

score, specificity and FPR because XGBoost 

could accurately predict loan defaults and had a 

lower misclassification rate of loan defaults 

than LightGBM. Even though both XGBoost 

and LightGBM were the best performers in 

predicting mortgage loan defaults after 

optimization, with better performance on all 

evaluation metrics, XGBoost had the best 

performance with the best overall model 

performance among all ML boosting 

algorithms. The overall results also 

demonstrated that the ML boosting algorithms 

were more accurate than the traditional 

regression-based approach. 

Table 5 shows the detailed 5-fold cross 

validation results for LR, GB, LightGBM and 

XGBoost algorithms, demonstrating that 

XGBoost was the most accurate across 5 folds 

and the best overall performing model among 

all ML algorithms.   

 

Table 5. The 5-fold cross validation results for LR, GB, LightGBM and XGBoost algorithms. 

    

Model Logistic Regression Gradient Boosting Light GBM XGBoost 

Metrics Mean SD Mean SD Mean SD Mean SD 

Overall Accuracy 0.665 0.0041 0.756 0.0046 0.981 0.0015 0.982 0.0012 

Fold 1 Accuracy 0.666  0.0023 0.759 0.0034 0.981 0.0017 0.982 0.0014 

Fold 2 Accuracy 0.665 0.0025 0.757 0.0032 0.981 0.0019 0.983 0.0013 

Fold 3 Accuracy 0.663 0.0031 0.755 0.0068 0.983 0.0005 0.983 0.0009 

Fold 4 Accuracy 0.667 0.0063 0.752 0.0047 0.980 0.0014 0.981 0.0007 

Fold 5 Accuracy 0.665 0.0053 0.755 0.0026 0.981 0.0015 0.982 0.0009 

 

While XGBoost consistently achieved the 

highest overall model accuracy, LightGBM 

demonstrated the most substantial gains in 

accuracy after hyper-parameter optimization. 

Although feature importance highlights which 

predictors contributed most to model accuracy 

(Figure 3), the empirical findings demonstrated 

that hyper-parameter tuning played an even 

more critical role in enhancing overall model 

performance, with particularly substantial gains 

in predictive performance observed for 

LightGBM when comparing pre- and post-

optimization results (Table A.1 for pre-

optimization results in the Appendix and Table 

4 for post-optimization results for comparison). 

The difference in performance gains between 

LightGBM and XGBoost after hyper-parameter 

tuning or optimization, despite similar feature 

importance rankings, can be explained by the 

underlying algorithmic differences between the 

two models. 

While both are gradient boosting frameworks, 

LightGBM uses a leaf-wise (best-first) tree 

growth strategy with depth constraints, whereas 

XGBoost typically grows trees level-wise, as 

discussed in Section 3.2 and Section 3.3. on 

LightGBM and XGBoost model methodology.  

The leaf-wise strategy tends to produce more 

complex interactions between features and can 

yield higher accuracy when the model is 

carefully tuned. However, it is also more 

sensitive to parameter settings such as number 

of leaves, learning rate, depth of the tree, which 

explains why optimization produces a larger 

relative performance improvement for 

LightGBM than for XGBoost. 
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In contrast, XGBoost’s level-wise approach is 

more conservative and less sensitive to 

parameter tuning, meaning the gains from 

hyper-parameter optimization are typically 

smaller. Importantly, feature importance 

measures only the relative contribution of 

features to splits, not the efficiency of the 

boosting process itself. Thus, two models can 

have similar feature importance profiles 

(CLTV, CUPB, etc.) but differ in how well their 

boosting algorithms (i.e., parameter settings) 

leverage those features under optimized 

settings. 

5.4 AUC and ROC performance   

XGBoost achieved the highest prediction 

accuracy in predicting mortgage loan defaults 

with an AUC of 0.982 in both training and 

testing data. LightGBM also achieved similar 

AUC as XGBoost, with slightly lower AUC in 

both training and testing data (0.981). 

Following XGBoost and LightGBM was GBM 

with AUC of 0.774 in the testing data. 

Meanwhile, the regression-based approach with 

the logit model only has an AUC of 0.678 in the 

testing data, indicating the poorest performance 

among the four models. XGBoost and Light 

GBM outperform GBM and LR significantly in 

terms of AUC on both training and testing data. 

Figure 5 compares the ROC curves across ML 

boosting algorithms and LR in this study. 

XGBoost and Light GBM achieved the best 

prediction accuracy in mortgage loan defaults 

prediction in both training and testing data. The 

Logit model demonstrated potential in 

classifying loan defaults, however, with the 

lowest predictive accuracy. GBM performed 

slightly better than the Logit model but was 

hampered by much lower accuracy than 

LightGBM and XGBoost. Overall, the ML 

boosting algorithms demonstrated significant 

improvement in predicting loan defaults. 

XGBoost and Light GBM models were the most 

accurate. 

 

  

 

Figure 5. ROC and AUC comparison for four ML models: Logistic Regression, Gradient Boosting. Light GBM and 

XGBoost – training and testing Data. Figure 5a and 5b shows the ROC curve comparison on the training data and 

the testing data, respectively. 
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Overall model performance assessment 

indicated that XGBoost and LightGBM 

outperformed Logistic Regression and GBM in 

predicting U.S. mortgage loan defaults. 

Boosting algorithms possessed higher accuracy, 

higher F1 scores, balanced recall and precision 

metrics, higher sensitivity, specificity and 

higher AUC scores than traditional regression-

based models. Logistic Regression, while 

interpretable and meaningful, yielded the 

poorest performance in identifying “bad” loans, 

or mortgage loan defaults. 

ML Boosting models can predict mortgage loan 

defaults more accurately than the traditional 

Logistic Regression approach. Boosting models 

successfully minimized the inaccuracy because 

they could account for various relationships, 

nonlinear and concave patterns in the dataset 

with multiple features that were often 

overlooked by simpler models such as the 

Logistic Regression model. These results 

demonstrate that ML boosting algorithms, 

including XGBoost and LightGBM, were more 

effective in capturing complex patterns in 

borrower behavior, making them an ideal choice 

for financial institutions managing credit risks. 

5.5 Perspectives           

Future studies should analyze other ML 

algorithms including deep learning, neural 

network and other tree-based algorithms. Based 

on the findings of this paper, ML Boosting 

models including XGBoost and LightGBM can 

be used as effective baseline models for 

comparison. 

Future research could extend the current study 

by examining loan performance under historical 

or simulated economic stress scenarios. The 

dataset used in this study comprised of loans 

originated in 2020, with performance observed 

through September 2023, and therefore did not 

include loans from earlier periods, such as the 

2007–2010 subprime mortgage crisis. While 

historical risk mispricing during that period is 

informative for understanding past systemic 

vulnerabilities, it is not directly relevant to the 

more recent underwriting standards and 

macroeconomic conditions reflected in the 

current data. To enhance the robustness and 

generalizability of the proposed models, future 

work could add stress tests using simulated 

environments or historical scenarios 

characterized by extreme conditions, such as 

high inflation rates exceeding 10% or 

characteristics of subprime mortgage loans, to 

support more resilient risk assessment 

frameworks for banks, financial institutions, 

and regulators. 

6 Conclusion              

The study showed that ML boosting algorithms, 

including Gradient Boosting, XGBoost, and 

Light GBM, outperformed Logistic Regression 

in predicting mortgage loan defaults. The paper 

found that XGBoost and Light GBM were the 

top-performers with 98% accuracy on the 

testing data. The results were based on Freddie 

Mac data, a rich set of loan, borrower and 

property characteristics, combined with 

boosting algorithms with regularization 

techniques and hyper-parameter tuning within a 

data-driven framework. The finding supported 

the key hypothesis that ML boosting algorithms, 

especially XGBoost and Light GBM, were more 

accurate compared to the traditional Logistic 

Regression model in predicting mortgage loan 

defaults. 
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These ML models, XGBoost and Light GBM, 

were well-positioned to capture nonlinear 

patterns in borrower credit profiles 

simultaneously with the macroeconomic 

landscape to improve model prediction 

accuracy. Although the ML boosting models 

provided improved accuracy, traditional models 

such as Logistic Regression are likely to remain 

beneficial for interpreting the impacts of 

specific risk factors and economic indicators. 

The study can be used as guidance for ML 

algorithm selection and designing a system that 

can be used to predict loan defaults in credit risk 

assessment for large banks and the financial 

industry. This would help identify “bad” loans 

in a timely manner and minimize potential loss. 

Future applications of this research would 

consist of applying the same techniques in the 

prediction of binary outcomes in any field. AI 

and ML tools will help professionals make 

better predictions, reduce errors, and achieve 

more effective and accurate decisions. 

The finding contributes a significant solution to 

the FinTech industry, including banks, 

mortgage lenders, originators, and regulators. 

Beyond the context of mortgage lending, the 

paper also contributes to a broader science 

community with highly accurate classification 

models. 
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Appendix 

Table A1. Model performance results for LR, GB, LightGBM and XGBoost ML algorithm 

before hyper-parameter optimization. 

 

Model Logistic Regression Gradient Boosting Light GBM XGBoost 

Metrics Training Testing Training Testing Training Testing Training Testing 

Accuracy 0.665 0.678 0.756 0.774 0.843 0.852 0.966 0.965 

AUC 0.665 0.678 0.756 0.774 0.843 0.852 0.966 0.965 

F1 Score 0.669 0.685 0.758 0.781 0.850 0.861 0.966 0.965 

Sensitivity 0.676 0.700 0.766 0.805 0.894 0.913 0.962 0.959 

Specificity 0.655 0.656 0.745 0.742 0.791 0.791 0.969 0.972 

TPR 0.676 0.700 0.766 0.805 0.894 0.913 0.962 0.959 

FPR 0.345 0.345 0.255 0.258 0.209 0.209 0.031 0.029 

 

 

 

 


