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Abstract

This research presents an advanced scientific approach using machine learning (ML) models
with boosting algorithms and a data-driven modeling approach to achieve ~ 98% prediction
accuracy for credit risk evaluation. The study was conducted using a public, loan-level dataset
from Freddie Mac for the post-2020 period, and identified multiple credit risk factors that
influenced the likelihood of loan default. The research examined whether ML boosting
algorithms, including Gradient Boosting, XGBoost, and Light GBM, outperformed Logistic
Regression in predictive performance. The paper proposes novel ML-based credit risk algorithms
to address challenges, including data imbalance, hyperparameter optimization, and robust cross-
validation, to achieve reliable estimation. For comprehensiveness and robustness, model
performance was evaluated using a suite of key metrics, including accuracy, sensitivity,
specificity, true and false positive rates, AUC, F1 scores, and ROC analysis. The empirical
results of the paper demonstrated that ensemble methods consistently achieved superior accuracy
compared to single-model approaches. The paper found that XGBoost and Light GBM were the
top performers with 98% accuracy after optimization and 5-fold cross-validation. The findings
demonstrated that ML models using boosting algorithms, especially XGBoost and Light GBM,
achieved remarkable accuracy in distinguishing between “good” and “bad” loans compared to
the traditional logit model, without exhibiting signs of overfitting. By outperforming current
models for predicting loan defaults, the result carries significant implications for lenders,
regulators, and policymakers in the financial industry, providing more robust tools for credit risk
modeling, facilitating the development of FinTech-driven lending solutions, and supporting the
preservation of financial stability.
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1 Introduction

One of the key tasks in risk management for the
financial sector is to achieve sound credit risk
assessment. In lending practice, credit scoring
models are primary tools that financial
institutions use to assess the creditworthiness of
borrowers, estimate the likelihood of borrower
default, manage lending risks effectively, and
make prudent investments (1). Among different
types of loans, mortgage loans pose a
particularly significant risk due to their large
values and long terms for repayment. As a
result, to mitigate credit risks and resulting
losses due to mortgage loan defaults, it is
essential for banks and financial institutions to
develop accurate predictive models.

Understanding and accurately predicting
mortgage loan defaults is essential not only for
minimizing credit losses among lenders but also
for promoting broader macroeconomic stability.
Rising default rates, especially widespread
subprime mortgage defaults, can lead to a series
of financial disruptions, as demonstrated during
the 2008 global financial crisis (2). Advancing
credit scoring models remains a critical focus of
both academic research and financial risk

management in the financial sector.

In the United States, the increased availability
of consumer financial data and the need for
increased risk management systems have led to
the evolution of credit scoring systems from
traditional statistical methods, which have been
widely adopted due to their ease of
interpretation and regulatory acceptance (3), to
artificial intelligence (AI) or machine learning
(ML) credit scoring models (4, 5). The use of
statistical and AI/ML-based credit scoring
systems has grown rapidly in response to the
increasing availability of consumer financial
data and the need for more robust risk. ML
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models can handle a large data of borrower
behavior, loan characteristics, and risk profiles
efficiently, and learn different patterns and
relationships in the data to build more accurate
models than traditional credit scoring models

4.

Given the dynamic nature of the economy and
more complex borrowers’ behavior, it is
essential for risk assessment models to remain
adaptive, continually updating their algorithms
to reflect new data and emerging insights. It is
necessary to evolve from standard credit scoring
procedures to more sophisticated, data-driven
methodologies that incorporate ML and
advanced predictive analytics.

To achieve the goal of developing highly
predictive models for credit scoring assessment,
this research collected Freddie Mac loan-level
data with more than 100,000 loans, including a
rich set of characteristics of borrowers, loan
records, macroeconomic factors, and property
factors that could have a potential impact on the
repayment of mortgage loans. Recent
advancements in ML have introduced more
flexible and potentially more accurate credit
scoring models, such as gradient boosting and
ensemble methods, which can capture complex
nonlinear relationships in the data (4, 5). Hence,
this paper explored ML boosting algorithms to
enhance the prediction accuracy for mortgage
default models, and to create efficient early
warning systems to reduce credit risks and
losses. Having accurate mortgage default
models is crucial because it helps mortgage
lenders remain competitive by managing risk
efficiently and pricing the portfolios effectively.
It also helps regulators monitor financial
stability, make timely and effective decisions or
interventions, and create sound lending
practices in the finance sector.
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To help lenders, financial investors, and
professionals make proactively well-informed
decisions; this research presents a novel
approach to successfully predict loan defaults in
the U.S. housing market. The main objective of
this analysis was to examine if ML boosting
algorithms could be used to predict loan
defaults. The key hypothesis was that ML
boosting  algorithms offer higher
prediction accuracy than traditional Logistic
Regression [logit] in predicting mortgage loan
defaults. The results of the paper show that all
the boosting algorithms showed improvement in

could

prediction compared to the Logistic Regression.
The study found that ML models using boosting
algorithms, especially XGBoost and Light
GBM, demonstrated superior performance
compared to the traditional logit model in
distinguishing between “good” and “bad” loans.

The outline of the rest of the paper includes five
sections. Section 2 presents data overview, data
preprocessing, feature selection, extraction, and
correlation analysis. Section 3 discusses ML
methodology and presents the three ML
boosting  algorithms, including Gradient
Boosting, XGBoost, and Light GBM, in
comparison with Logistic Regression. Section 4
discusses how the ML models were constructed,
optimized with hyper-parameter tuning and
evaluated. Section 5 shows the results and the
discussion of the results. The last section
concludes the study.

2 Data

2.1 Data overview

To achieve the goal of developing accurate
mortgage loan default models, the study
employed a large dataset of mortgage loans
originated in 2020, with loan performance
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observed up to September 2023. The data
consisted of more than 100,000 loans, which
were mostly 30-year fixed-rate mortgages and
extracted from Freddie Mac’s public loan-level
data (6). The dependent variable was Mortgage
loan default status, which was defined as 1 if the
mortgage loan defaulted with missing payments
for at least 6 months, and 0 otherwise. Mortgage
loan delinquencies were cleaned and added to
the loan-level dataset. After cleaning the data,
the data contained ~ 10.5% loan defaults (N =
10,867), and the rest being loans that were
repaid on schedule or paid in full or missing
payments for less than 6 months (N = 92,732).
The data consisted of 18 independent variables,

borrower, and property
Other features,
macroeconomic data including unemployment
rates and inflation rates, were also added to the
data based on geographical location and
individual loan performance.

including loan,

characteristics. such as

2.2 Data preprocessing

To mitigate the challenge of class imbalance
between the default and non-default loans
(10.5% vs. 89.5%), a stratified data partition
was used. To further balance the dataset and
ensure equal representation of “good” and
“bad” loans in the training and testing datasets,
the  Synthetic =~ Minority  Oversampling
Technique (SMOTE) applied to
synthetically increase the minority class, in

was

combination with under-sampling the majority
class. Specifically, for each minority instance,
SMOTE identifies its k nearest neighbors,
randomly selects one neighbor to gather a
synthetic sample; this process is repeated until
the minority class reaches the desired level of
representation relative to the majority class (7).
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SMOTE addresses class imbalance by creating
synthetic samples an
interpolation approach, which helps mitigate
overfitting that can result from merely
duplicating minority observations. As a result of

minority using

applying SMOTE to increase the minority class
and under-sampling the majority class, the final
balanced dataset of more than 65,000 loans
achieved an equal distribution of 50% loan
defaults and 50% non-default loans across both
training and testing data.

To fill in missing values, only for the Current
Unpaid Balance (CUPB) and the Current Loan-
to-Value (CLTV), the mean imputation process
was implemented. However, the missing rate
negligible at 0.06%. After data
preprocessing completed, variable
constructions, feature selection, and exploratory
data analysis of mortgage
performed. Feature selection was used to
identify  relevant variables for model
construction. Correlation analysis and recursive
feature extraction performed
simultaneously to search for features that
significantly improved the predictions of
mortgage loan defaults. The data was cleaned,
balanced, preprocessed, and analyzed using R
and Python.

was
was

loans were

WEre

2.3 Feature Extraction

Freddie Mac data was used in this paper to
predict mortgage loan defaults because it has a
rich set of features of borrower, loan, and
property characteristics that are consistent with
previous work related to credit risk assessment
(8). The data has a comprehensive set of
features, including Credit score (FICO), CLTV,
CUPB, origination rates, difference between
origination and current interest rates, loan
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purpose, origination quarters, and loan age.
Loan age refers to the elapsed time since loan
origination up to September 2023 or until the
time the loans were tracked, or until the payoff
date (in the case that loans were paid off),
whichever came first. Notably, loan age is not
the number of months until default or until the
time loans missed payments for 6 months.
and property features included
whether a borrower was a first-time home
buyer, and whether properties were single-
family homes or owner-occupied.

Borrower

FICO is a strong indicator of borrowers’ past
credit behavior in making scheduled payments
(9, 10), thus FICO was chosen as a predictive
variable in identifying potential mortgage
defaults. High CLTV is associated with high
default risks since a high CLTV limits borrower
equity and reduces incentive to make payments
if property values decline (11). As demonstrated
during housing market downturns, borrowers
who had high CLTYV strategically defaulted due
to declining house prices and home equity.
Higher mortgage interest rates correlate with
higher default risks because high interest rates
cause payment burdens and instability (12).
Higher unpaid balances (CUPB) also imply
higher loan amounts, resulting in increases in
default probabilities and financial risks,
especially during economic recession (13).

2.4 Correlation analysis

Correlation analysis is a core step to examine
the relationship between borrower or loan
characteristics and default behavior. This step is
crucial in selecting appropriate features for
developing accurate mortgage loan default
prediction models.
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A correlation heatmap was produced to help
visualize the pairwise correlations among
variables in the dataset (see Figure 1). A
correlation value of 1 or -1 is a perfectly positive
or negative correlation, whereas a correlation
value of O implies no correlation. The
correlation analysis and heatmap were

Original article

constructed in Python using several Python
libraries for data analysis and visualization.
Specifically, the
generated using df.corr(), and visualized with

correlation matrix was

seaborn.heatmap, while matplotlib.pyplot was
used for plotting.

Heatmap of Correlation between Default and Other Factors
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Figure 1. Correlation heat map between default status and other characteristics.

Table 1. VIF values for all features.

Variable | FICO CLTV CUPB ORG_RATE LOAN.AGE DRATE | Otherprop | PUD Investment | Purchase | NonCORefi | UNRATE | Inflation
VIE | 1.16 [ 236 [ 1.13 | 142 2.79 1.06 | 1.04 |[1.06|1.17 [1.79 |[1.82 279 | 215
The correlation heat map provides an effective these loan, borrower characteristics, and

way to visualize the directions and strength of
relationships between default behavior and
other features, as well as across features in the
dataset. The directions of relationships between
default behavior and other features were as
expected. For example, default behavior was
negatively correlated with higher FICO and
positively  correlated with CLTV and
origination interest rates. This indicated that
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macroeconomic factors were meaningful in
classifying default behavior. It was also
anticipated that the correlation values would be
low because a Pearson correlation measures a
linear relationship, and it cannot capture well
the non-linear correlation between a binary
default status and other features. ML models are
better equipped mathematically to capture those
non-linear relationships.
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While some features showed moderately strong
correlations (i.e., loan age and CLTV), this did
not necessarily imply multicollinearity. Table 1
presents the variance inflation factor (VIF)
values for each feature. All VIF values were <
5, indicating that there were no multicollinearity
challenges, thereby ensuring optimal model
performance and model evaluation.

3 Methods

ML is a scientific discipline focused on
developing mathematical algorithms
statistical models that improve performance.
The science of ML is closely connected to
computational statistics, which facilitates more
accurate predictions through a data-driven
approach. ML allows for the identification of
data  patterns, insights,
relationships in large datasets (14-16). Rather
than relying on explicit programming, ML
algorithms construct mathematical models from
training data to make predictions on the testing
data. Integrating ML algorithms into credit risk
assessment plays an important role in predicting
mortgage loan default accurately because it

and

and valuable

helps make a significant business impact in the
real-world financial sector for large banks,
mortgage lenders, financial regulators,
investors, and policymakers.

To predict the probability of mortgage loan
defaults, this study included three ML boosting
methods as building blocks of tree-based
classification techniques (17). Boosting
algorithms rely on dependent ensembles,
iteratively adding trained base models to reduce
the misclassification of the current ensemble,
which helps provide significantly better
predictions than a single classifier in credit risk
assessment (18). This section provides the
detailed method of each boosting algorithm
among Gradient Boosting, LightGBM, and
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XGBoost in
Regression.

comparison with  Logistic

3.1 Gradient Boosting (GB) algorithm
Gradient Boosting is an algorithm that trains
models to iteratively learn from previous errors
and develops a more accurate model through
ensemble techniques (19). The objective of the
GB process is to minimize the residuals
iteratively via a loss function and add new
predictions until the final model has the highest
accuracy. GB starts with an initial value (often
the mean of the target variable) and generates a
prediction for the first iteration. From there, the
Gradient Boosting Model (GBM) makes
predictions by gradually improving its estimate
using residuals from the previous iterations. GB
scales the estimate from the previous prediction
using a learning rate and combines the
predictions. Over several iterations, it can learn
from its previous mistakes and thus obtain better
predictions. GB uses a decision tree as the base
leaner; however, it ensembles “weak learners”
to learn the misclassification from each tree and
add newly trained trees to reduce errors and
decrease the overall loss. GBM shows the
potential in classifying mortgage loan defaults
due to its advantage of capturing non-linear and
complex data patterns.

3.2 Light Gradient
(LightGBM) algorithm
LightGBM is an efficient and scalable boosting
algorithm that uses histogram-based binning

Boosting  Machine

and a leaf-wise system to process large datasets
with multiple features (20). LightGBM grows
trees leaf-wise instead of level-wise like normal
boosting algorithms. With the leaf-wise
mechanism, Light GBM selects the leaf to be
split with the maximum loss reduction.
Therefore, this strategy allows trees to grow
deeper, leading to the potential for increased
accuracy.
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This is especially true in binary classification
problems. LightGBM also offers histogram-
based feature binning. This reduces memory
requirements and significantly increases the
speed of computation.

The Gradient Boosting algorithm is divided into
the following steps (19). Step 1 minimizes the
loss function, given by

G(x) = argming ¥i—; L(y;,0) (eq 1), where y;
is the true value, and the loss function L(y;, 6).
Step 2 computes the residuals or the negative
gradient of the loss function.

Step 3 fits a base learner and trains a decision
tree on the residuals. Step 4 updates the model
using the learning rate, given by

G(xX)p =G(X)p_q + 0,T(x;; @) (eq 2). Finally,
Step 5 iteratively minimizes the loss function by
adding newly trained trees to correct the
residuals from previous trees. The recursive
model is run until the convergence conditions
are met.

The Light GBM’s objective function is given by

(20), 19 =Ty 1 (s + i) + 00
(eq 3). where [ is the loss function in which y; is
the actual default status and 9; is the predicted
default status; Q(f;) 1is the additional
regularization term to eliminate overfitting and
model complexity. The Light GBM algorithm
includes the following steps (20). Step 1
minimizes the regularized loss using the
second-order Taylor series as the equation,
LO = 31 [gife () + S hife (62| + 2(f)

(eq4), where g; and h; are first and second
derivatives or Gradients and Hessians matrix,

respectively. Step 2 computes the first and
second derivatives, using both the Gradients and
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Hessians matrices. Step 3 uses histogram-based
binning to increase computation speed. Features
are binned into buckets to reduce computational
time. Step 4 uses Leaf-Wise Tree Growth.
LightGBM grows trees by splitting the leaf with
the maximum loss reduction, which results in
more accurate prediction. Finally, in Step 5 a
tree is added to the ensemble and the model is
updated iteratively.

LightGBM was developed based on using two
key features: Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature
Bundling (EFB). Effectively, GOSS enables
LightGBM to focus more on larger gradients
(often misclassified samples), leading to
improved performance in binary classifications.
The leaf-wise ability is prone to overfitting
(particularly for smaller datasets) but can be
mitigated through hyper-parameter tuning: max
depth and minimum data, among other
parameters. LightGBM is popular in the
financial industry because it can achieve
efficiency and prediction accuracy while
reducing computational time significantly.

3.3 Extreme Gradient Boosting (XGBoost)
algorithm

Extreme Gradient Boosting (XGBoost) is a
supervised machine learning algorithm that
ensembles classification trees with a scalable
and regularized variant of Gradient Boosting
Machines (21). It provides parallel tree boosting
that offers high performance, time efficiency,
and scalability. XGBoost expands upon the
standard framework by considering a second-
order Taylor approximation of the loss function
and both first and second derivatives (i.e.,
Gradient and Hessian) for  function
optimization.
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XGBoost  provides stable improvements
through learning at each iteration and handling
non-concavity efficiently to achieve refined
performance. The main advantage of XGBoost
is its capability to regulate model complexity
and prevent overfitting using regularization
techniques. XGBoost incorporates additional
improvements, such as a) column block store to
allow parallel computation, b) sparsity-aware
algorithms to effectively handle missing values,
and c) loss-based tree pruning to increase model
performance. Overall, these optimizations help
XGBoost established
machine learning algorithms, offering high
accuracy and fast performance.

outperform  many

XGBoost offers the best performance in many
cases due to its advanced boosting techniques
and regularization, though it requires careful
parameter tuning to avoid overfitting. XGBoost
also combines weak learners to create a strong
predictive model. It has acquired a reputation as
being one of the fastest gradient boosting
algorithms. XGBoost mitigates the inefficiency
due to evaluating losses of all possible splits by
examining the distribution of features across all
data points in a leaf, thereby narrowing the
search space for potential splits. This
inefficiency is further alleviated when the
number of inputs increases in a large dataset.

XGBoost’s speed is its most advantageous
feature. This rapid performance allows for the
efficient exploration of
hyperparameter settings, which is essential
given the large number of hyperparameters that
require tuning. Most of these hyperparameters

numerous

are aimed at preventing overfitting, as
combining thousands of base models can easily
lead to overfitting despite their simplicity.
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XGBoost minimizes a regularized loss, making
it robust to overfitting. Based on its desired
advantages, XGBoost has been used extensively
in credit risk modeling for commercial banks to
provide accurate loan default predictions.

The XGBoost’s objective function is given by
(21), XGB =X L(yi, f(x) + k=1 2(fi) (eq
5), where Q(f}) is the regularization term at the
kth iteration, which is expressed as the
following, 2(fi) = BT +3pZj_,wf  (eq ©),
where B is the complexity of leaves, T is the
number of leaves, p denotes the penalty
parameter, and w; is the weight of each leaf node

J-

2
Wi

The objective function for XGBoost is similar
to LightGBM but the two models are different
in terms of efficiency techniques and the tree
building method. XGBoost grows trees level-
wise and uses continuous features instead of
binning features.

The XGBoost algorithm includes the following
steps (21). Step 1 minimizes regularized Loss
using second-order Taylor series as,

LO ~ T [gife ) + 5 hefeG)?| + 2()
(eq7), where g; and h; are the first and second
derivatives, represented by the Gradients and
Hessians  matrices Step 2
computes the first and second derivatives, using
both the Gradients and Hessians matrices. Step
3 fits a tree to Gradient Statistics, and maps

respectively.

inputs to values that minimize the loss function.
Step 4 computes the optimal leaf weights and
finally Step 5 adds a tree to the ensemble and
updates the model iteratively. Overall, with the
introduction of regularization terms, XGBoost
is more effective at preventing overfitting while
achieving better prediction performance.
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3.4 Logistic Regression (LR)

Traditional credit scoring models utilize logit
models, as binary classification models (3, 22).
The probability of default status is modeled
using a sigmoid function (see equation 8). The
log-odds of default are expressed as a linear
combination of borrower characteristics (X) and
their corresponding (B) (see

eXB
P(Yl = 1) = —1+eXB (eq 8)
log (%) =XB (eq9)., where XB = B, +
B1X1+ Xy + -+ B3Xs t e

coefficients

equation 9).

Even though the logit model results can be
interpreted linearity and
independence assumptions are strong model

intuitively,

Original article

assumptions. Boosting algorithms offer a more
flexible and powerful framework that can
capture complex, nonlinear relationships in
high-dimensional datasets of rich borrower,
loan, and property characteristics (4, 18). This
makes ML boosting algorithms especially more
innovative, accurate, and informative in credit
decisions in practice.

4 Building mortgage loan default models

4.1 Data modeling and cross-validation

The data modeling process with the ML
boosting algorithms in this paper was structured
as shown in Figure 2.

Mortgage Loan Dataset

Training set 80%

Feature Importance

ML Boosting algorithms

Test set 20%

Gradient Boost, LightGBM, XGBoost

v

Optimization

Performance Evaluation

Figure 2. Mortgage loan default data modeling diagram.

The balanced data was stratified split into 80%
for training and 20% for testing using the
Python frain_test split function. The data
modeling process also employed Python
libraries, including Scikit-Learn, to perform
data preprocessing and model evaluation. The
training data was used to train the model, and
the final trained model was applied to the testing
data to obtain predictions of mortgage loan
defaults.

4.1.1 K-fold validations

K-fold cross-validation is a resampling
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technique for evaluating the generalizability and
robustness of predictive models. The key
benefit of cross-validation methods is to
evaluate model performance on new data. One
of its benefits is to reduce the overfitting risk
that often arises in the presence of high-
dimensional or noisy datasets. Using this
approach, the training data were randomly
partitioned into K equal subsets, or “5 folds”. In
each iteration, (K -1) folds (i.e., four folds in 5-
fold cross-validation) were used to train the
model, while the remaining fold was held out
for validation.
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This process was repeated K times. The results
from all iterations were ultimately averaged to
produce an overall estimate of the model. A 5-
fold cross-validation procedure was employed
to evaluate all four classification models in this
study. The 5-fold approach provides a balance
between computational efficiency and reliable
performance estimation.

Four classification algorithms, including
Logistic Regression and the three boosting
algorithms: Gradient Boosting, XGBoost, and
LightGBM, were used to train the predictive
models. The entire calculation process was
performed in R and Python. R libraries with
xgboost, lightgbm, and gbm packages were used
for ML Boosting algorithm implementation.
Supporting libraries, such as caret for model
evaluation and ggplot? for visualization, were
also applied throughout the analysis. The
Python’s Scikit-Learn, Gradient Boosting,
XGBoost, and LightGBM libraries,
respectively, were also employed in this
analysis. Python’s Scikit-Learn is the primary
ML library. In addition, the Python package
Matplotlib was used to perform data distribution
analysis for multiple features. The paper also

employed other libraries, including the NumPy

Original article

library for working with matrices and math
operations, the SciPy library for scientific and
technical computing, the Matplotlib library for
data visualization, and the Pandas library for
data handling, manipulation, and analysis.

4.2 Feature importance

Feature Engineering (FE) is a valuable tool in
ML to identify those features that contribute the
most to model predictions. FE enhances model
interpretability, supports feature selection by
giving the influential size of each predictor so
that key drivers of outcomes can be recognized,
trained, and wused for improving model
accuracy.

After feature extraction and selection, the
boosting models were fitted based on the
training set. The test set was adopted to evaluate
model performances across boosting models
and LR. Hyper-parameter tuning was applied to
examine whether model performance improved
and to obtain optimal performance. The last
stage was to compare the performance of these
models before and after optimization; followed
by the determination of the optimal model and
its deployment.

Table 2. Hyper-parameter optimization of the boosting algorithms.

Hyper-parameters Description Ranges of Parameters Optimal
Value
Learning Rate Shrinking coefficient of each tree 0.001, 0.01, 0.05, 0.1, 0.5 0.1
Max Depth Maximum depth from the root to the leaf of | 3, 5,9, 11, 15, 19 9
a tree.
Number of leaves Number of leaves for each tree 15, 20, 30, 40 30
Max Features Proportion of randomly selected features 0.5,1 1
each iteration
Sample split The subsample rate of features for every 0.1, 1 1
split each tree
Number of estimators The highest number of base learners 100, 500, and 1000 1000
Journal of High School Science, 9(3), 2025 621




4.3 Hyper-parameter optimization

The performance of boosting algorithms
depends on tuning the hyper-parameters to
achieve superior performance (23). The hyper-
parameters that contributed most significantly
to the robustness and accuracy of the model
were the number of estimators, learning rate,
max features, max depth, min samples split, min
samples leaf for Light GBM; in addition to
min_child weight, and colsample by tree for
XGBoost.

Table 2 shows the hyper-parameters that were
tuned during the optimization process of the
boosting algorithms. The learning rate controls
the contribution of each individual tree to the
overall ensemble by shrinking the weights
assigned at each boosting step. A lower learning
rate typically enhances model robustness,
reduces the risk of overfitting; however,
excessively small values can lead to under-
fitting and long training time. Conversely, a
high learning rate may speed up convergence
but can increase the risk of overfitting. A higher
number of estimators is associated with the
better model performance. However, the higher
number of estimators can increase computation
cost and cause model complexity. Deeper trees
can capture complex nonlinear patterns, but
they may also over-fit the training data, whereas
shallower trees may underfit. Higher values of
the maximum number of features increases
correlation between trees in the ensemble, may
encounter over-fitting, while lower values
introduce more randomness, helping to reduce
inter-tree correlation and enhance
generalization. The sample split serves as a
regularization parameter, preventing the model
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from learning spurious patterns when set at
higher values.

Overall, these hyper-parameters define the
trade-offs between learning speed, accuracy,
variance, and computational efficiency. If the
value of the parameter is set too low, there might
be an underfit prediction. In contrast, if the
value of the parameter is set too high, the
computation costs increase. The lower values
may alleviate the over-fitting challenge while
the higher values may cause under-fitting. Thus,
optimal tuning is essential to ensure that the
boosting algorithm generalizes well across new
and unseen data. After optimization, the last
column in Table 2 shows the final results of
selected parameters that balanced between
prediction  accuracy,  overfitting, and
computational time.

4.4 Model performance evaluation

In this research, credit scoring machine learning
models were evaluated based on four machine
learning algorithms: Logistic Regression,
Gradient Boosting, LightGBM, and XGBoost,
using the results from both training and testing
data. Model performance evaluation across ML
boosting models and LR was performed for both
the training and the testing datasets. In order to
assess whether the model was overfitting, it is
important to compare testing accuracy with
training accuracy across models to see if
extremely poor performance in testing data
occurs. Table 3 presents model performance
metrics used to evaluate the accuracy of ML
boosting prediction algorithms compared to the
Logistic Regression model. Each of the metrics
is specified with its associated formula and
description in the table.
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Table 3. Model performance metrics.
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Metric | Description Mathematical Formula

ACC Accuracy ACC=(TP+TN)/(TP+FP+ TN+ FN)
SEN Sensitivity SEN = TP/(TP + FN)

SPE Specificity SPE = TN/(FP + TN)

TPR True positive rate TPR =TP/(TP + FN)

FPR False positive rate FPR =FP/(FP +TN)

F1 F1 Score F1 = 2 (Precision * Recall) /(Precision + Recall)
AUC Area under the curve AUC = (1 + TPR — FPR)/2

4.4.1 Accuracy

Accuracy refers to the overall correctly
predicted probabilities of both positive and
negative outcomes (defaults and non-defaults).
In credit risk assessment, a higher accuracy
implies a higher share of correct classification
of loan defaults and loan repayments relative to
the total number of loans in the sample.

4.4.2 Confusion Matrix and ROC

The confusion matrix serves as a basic statistical
tool for classifying a binary outcome, which can
be used to determine the accuracy of ML models
that predict loan default statuses. A confusion
matrix is used to compare the prediction to the
actual default and evaluate if “good” or “bad”
loans are predicted correctly. The four cells in
the confusion matrix represent True Positives
(TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN). Within this
table, two important performance measures are
contained with relation to the confusion matrix,
the true positive rate (TPR) and false positive
rate (FPR). The TPR and FPR are two key
metrics in forming the Receiver Operating
Characteristic (ROC) curve (24).
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TPR represents the ratio of actual positive
observations, such as loans that defaulted, that
were correctly identified by the model. This is
also known as recall or sensitivity and describes
the model’s ability to correctly detect loan
defaults out of all actual defaults. Meanwhile,
FPR is the proportion of actual negative
outcomes, such as loans that did not default and
loans that were incorrectly identified as
defaults. This measure indicates the extent to
which the model creates false alarms by
identifying repaid loans as defaulted loans.

Sensitivity measures the model’s ability to
correctly identify actual defaults (TP), while
specificity reflects its ability to correctly
identify repaid loans (TN). The Recall metric 1s
calculated in the same way as Sensitivity or
TPR. Precision is calculated as TP/(FP + TP).
Using only precision or recall does not
completely capture the prediction accuracy of
various models in terms of ranking. Therefore,
as a harmonic mean between Recall and
Precision, F1 Score is used as another metric to
rank the model accuracy across ML models.

623



The Area under the ROC Curve (AUC)
indicates how well a model can distinguish
between positive and negative outcomes (e.g.,
“bad” and “good” loans). A larger AUC value
indicates that the model is better at predicting
mortgage loan defaults across a range of
classification thresholds. On the other hand,
AUC values that approach 0.5 indicate a poor
level of discrimination or that the model’s
predictions are no better than random guesses.
Finally, AUC values that approach 1.0 have
better predictive power. While ROC tends to
show the trade-off between the TPR and FPR at
multiple thresholds, AUC serves as a key
overall measurement statistic of the model’s
classification accuracy.

5 Results and discussion

In this research, credit scoring machine learning
models were evaluated based on four machine
learning algorithms: Logistic Regression,
Gradient Boosting, LightGBM, and XGBoost,
using the results from both training and testing
data. Performance evaluation metrics include
Accuracy, AUC, F1 Score, Sensitivity and

Gradient Boosting LightGBM
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Specificity, TPR and FPR, or ROC. The
prediction results after optimization showed that
XGBoost and Light GBM outperformed the
results from Logistic Regression, and Gradient
Boosting. XGBoost and Light GBM were the
best models after optimization, achieving 98%
accuracy on both the training and testing data.

5.1 Results from Feature Importance

Feature Importance analysis found consistent
patterns across the three boosting models
(Figure 3). The top predictors of mortgage loan
default from the GBM were loan age, CLTV,
CUPB, origination interest rates, FICO, and
unemployment rate. In the LightGBM model,
CLTV ranked highest, followed by loan age,
unemployment rate, CUPB, origination rates,
and FICO, in addition to inflation rates.
Similarly, the XGBoost model also ranked
CLTV as the top predictor, followed by loan
age, CUPB, rates, FICO,
inflation, and origination interest rates as the
most influential variables. These results
suggested that creditworthiness indicators
remained the most significant predictors of loan
default across the different boosting techniques.

unemployment

XGBoost
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Figure 3. Feature Importance in mortgage loan default modeling.
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5.2 Results from confusion matrix

A confusion matrix is a standard statistical tool
to validate the correctly predicted loan defaults
against actual loan defaults for the classification
model. The matrix contains four quadrants: true
positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). A
higher total of TP and TN is associated with a
higher model accuracy.

Figure 4 shows the comparison of the confusion
matrix for four ML models, indicating that
Light GBM and XGBoost were the best models
with accurate predictions of loan defaults (i.e.,
more than 6400 loans). Both TP and TN for
Light GBM and XGBoost were significantly
greater than those for Logistic Regression and
GBM, based on the prediction results of the
testing data after optimization.

Based on the confusion matrix, classification
performance could be further assessed using F1
Score, sensitivity (TPR) and specificity (TNR),
TPR and FPR on the testing data. Among the
four models: Logistic Regression, GBM,
LightGBM, and XGBoost, XGBoost achieved
the highest F1 Score (0.982) in the testing data,
indicating a better balance between precision
and recall (see Table 4). LightGBM achieved an
F1 Score of 0.981, indicating performance close
to that of XGBoost. Followed by XGBoost and
LightGBM, GBM and LR presented with
significantly lower F1 Scores of 0.757 and
0.685, respectively.
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XGBoost achieved the highest specificity
(0.983), whereas LightGBM obtained the
highest sensitivity (0.981) in the testing data.
This suggested that XGBoost was slightly better
suited for minimizing FP (112 loans), whereas
LightGBM performed slightly better in
minimizing FN (125 loans). Both XGBoost and
LightGBM achieved specificity and sensitivity
~ 98%, indicating they were most effective in
measuring the probability of loan defaults and
non-defaults correctly among the four models.
Followed XGBoost and LightGBM, GBM and
LR presented with lower specificities (0.742
and 0.656 respectively), indicating weaker
performance in identifying non-default loans.
GBM and LR also presented with lower
(0.805 and 0.7 respectively),
demonstrated by a significant amount of FN in
the confusion matrix (1278 and 1967 loans that
were misclassified as non-defaults). Due to their
limitations in capturing nonlinearity and special
data patterns in a large data, GBM and LR had
lower F1 scores, sensitivity and specificity than
XGBoost and LightGBM.

sensitivities

The results also indicated that XGBoost and
LightGBM yielded the highest accuracy or the
lowest error with TPR of 98% and FPR of ~ 2%,
indicating that XGBoost and LightGBM were
the top performers in classifying loan defaults.
Following XGBoost and LightGBM was GBM
with a TPR of 0.805 and FPR of 0.258. LR had
the lowest TPR of 0.7 and the highest FPR of
0.345, indicating the weakest performance
among the four models.
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Figure 4. Comparison of confusion matrix for four ML models: Logistic Regression, Gradient Boosting, Light

GBM and XGBoost — testing data.

5.3 Accuracy

The results from Table 4 indicate that XGBoost
achieved the highest accuracy on both training
and testing data (98.2%). In addition, both
XGBoost and LightGBM performed better on
the training data and testing data after hyper-
parameter tuning optimization. Specifically,

XGBoost achieved 98.2% accuracy and
LightGBM achieved 98.1% accuracy on the
testing data. Meanwhile, GBM and LR had
relatively lower accuracy rates (76% and 68%,
respectively) compared to XGBoost and
LightGBM in the testing data.

Table 4. Model performance results for LR, GB, LightGBM and XGBoost ML algorithms.

Model Logistic Regression Gradient Boosting Light GBM XGBoost
Metrics Training Testing Training Testing Training Testing Training Testing
Accuracy 0.665 0.678 0.756 0.774 0.981 0.981 0.982 0.982
AUC 0.665 0.678 0.756 0.774 0.981 0.981 0.982 0.982
F1 Score 0.669 0.685 0.758 0.781 0.981 0.981 0.982 0.982
Sensitivity 0.676 0.700 0.766 0.805 0.979 0.981 0.980 0.980
Specificity 0.655 0.656 0.745 0.742 0.982 0.981 0.983 0.983
TPR 0.676 0.700 0.766 0.805 0.979 0.981 0.980 0.980
FPR 0.345 0.345 0.255 0.258 0.018 0.019 0.017 0.017
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XGBoost performed slightly better than
LightGBM in terms of accuracy, AUC, F1
score, specificity and FPR because XGBoost
could accurately predict loan defaults and had a
lower misclassification rate of loan defaults
than LightGBM. Even though both XGBoost
and LightGBM were the best performers in
predicting mortgage loan defaults after
optimization, with better performance on all
evaluation metrics, XGBoost had the best
performance with the best overall model
performance among all ML boosting

Original article

algorithms.  The overall results also
demonstrated that the ML boosting algorithms
were more accurate than the traditional

regression-based approach.

Table 5 shows the detailed 5-fold cross
validation results for LR, GB, LightGBM and
XGBoost algorithms, demonstrating that
XGBoost was the most accurate across 5 folds
and the best overall performing model among
all ML algorithms.

Table 5. The 5-fold cross validation results for LR, GB, LightGBM and XGBoost algorithms.

Model Logistic Regression Gradient Boosting Light GBM XGBoost
Metrics Mean SD Mean SD Mean SD Mean SD
Overall Accuracy 0.665 0.0041 0.756 0.0046 0.981 0.0015 0.982 0.0012
Fold 1 Accuracy 0.666 0.0023 0.759 0.0034 0.981 0.0017 0.982 0.0014
Fold 2 Accuracy 0.665 0.0025 0.757 0.0032 0.981 0.0019 0.983 0.0013
Fold 3 Accuracy 0.663 0.0031 0.755 0.0068 0.983 0.0005 0.983 0.0009
Fold 4 Accuracy 0.667 0.0063 0.752 0.0047 0.980 0.0014 0.981 0.0007
Fold 5 Accuracy 0.665 0.0053 0.755 0.0026 0.981 0.0015 0.982 0.0009

While XGBoost consistently achieved the
highest overall model accuracy, LightGBM
demonstrated the most substantial gains in
accuracy after hyper-parameter optimization.
Although feature importance highlights which
predictors contributed most to model accuracy
(Figure 3), the empirical findings demonstrated
that hyper-parameter tuning played an even
more critical role in enhancing overall model
performance, with particularly substantial gains
in predictive performance observed for
LightGBM when comparing pre- and post-
optimization results (Table A.1 for pre-
optimization results in the Appendix and Table
4 for post-optimization results for comparison).
The difference in performance gains between
LightGBM and XGBoost after hyper-parameter
tuning or optimization, despite similar feature
importance rankings, can be explained by the

Journal of High School Science, 9(3), 2025

underlying algorithmic differences between the
two models.

While both are gradient boosting frameworks,
LightGBM uses a leaf-wise (best-first) tree
growth strategy with depth constraints, whereas
XGBoost typically grows trees level-wise, as
discussed in Section 3.2 and Section 3.3. on
LightGBM and XGBoost model methodology.

The leaf-wise strategy tends to produce more
complex interactions between features and can
yield higher accuracy when the model is
carefully tuned. However, it is also more
sensitive to parameter settings such as number
of leaves, learning rate, depth of the tree, which
explains why optimization produces a larger
relative  performance  improvement for
LightGBM than for XGBoost.
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In contrast, XGBoost’s level-wise approach is
more conservative and less to
parameter tuning, meaning the gains from
hyper-parameter optimization are typically
smaller. Importantly, feature importance

sensitive

measures only the relative contribution of
features to splits, not the efficiency of the
boosting process itself. Thus, two models can
have similar feature importance profiles
(CLTV, CUPB, etc.) but differ in how well their
boosting algorithms (i.e., parameter settings)
leverage those features under optimized

settings.

5.4 AUC and ROC performance

XGBoost achieved the highest prediction
accuracy in predicting mortgage loan defaults
with an AUC of 0.982 in both training and
testing data. LightGBM also achieved similar
AUC as XGBoost, with slightly lower AUC in
both training and testing data (0.981).
Following XGBoost and LightGBM was GBM
with AUC of 0.774 in the testing data.

Original article

Meanwhile, the regression-based approach with
the logit model only has an AUC of 0.678 in the
testing data, indicating the poorest performance
among the four models. XGBoost and Light
GBM outperform GBM and LR significantly in
terms of AUC on both training and testing data.

Figure 5 compares the ROC curves across ML
boosting algorithms and LR in this study.
XGBoost and Light GBM achieved the best
prediction accuracy in mortgage loan defaults
prediction in both training and testing data. The
Logit model demonstrated potential
classifying loan defaults, however, with the
lowest predictive accuracy. GBM performed
slightly better than the Logit model but was
hampered by much lower accuracy than
LightGBM and XGBoost. Overall, the ML
boosting algorithms demonstrated significant
improvement in predicting loan defaults.
XGBoost and Light GBM models were the most
accurate.
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Figure 5. ROC and AUC comparison for four ML models: Logistic Regression, Gradient Boosting. Light GBM and
XGBoost — training and testing Data. Figure 5a and 5b shows the ROC curve comparison on the training data and

the testing data, respectively.
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Overall model performance assessment
indicated that XGBoost and LightGBM
outperformed Logistic Regression and GBM in
predicting U.S. mortgage loan defaults.
Boosting algorithms possessed higher accuracy,
higher F1 scores, balanced recall and precision
metrics, higher sensitivity, specificity and
higher AUC scores than traditional regression-
based models. Logistic Regression, while
interpretable and meaningful, yielded the
poorest performance in identifying “bad” loans,
or mortgage loan defaults.

ML Boosting models can predict mortgage loan
defaults more accurately than the traditional
Logistic Regression approach. Boosting models
successfully minimized the inaccuracy because
they could account for various relationships,
nonlinear and concave patterns in the dataset
with multiple that
overlooked by simpler models such as the
Logistic Regression model. These results
demonstrate that ML boosting algorithms,
including XGBoost and LightGBM, were more
effective in capturing complex patterns in

features were often

borrower behavior, making them an ideal choice
for financial institutions managing credit risks.

5.5 Perspectives

Future studies should analyze other ML
algorithms including deep learning, neural
network and other tree-based algorithms. Based
on the findings of this paper, ML Boosting
models including XGBoost and LightGBM can
be used as effective baseline models for
comparison.

Future research could extend the current study
by examining loan performance under historical
or simulated economic stress scenarios. The
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dataset used in this study comprised of loans
originated in 2020, with performance observed
through September 2023, and therefore did not
include loans from earlier periods, such as the
2007-2010 subprime mortgage crisis. While
historical risk mispricing during that period is
informative for understanding past systemic
vulnerabilities, it is not directly relevant to the
more underwriting
macroeconomic conditions reflected in the
current data. To enhance the robustness and
generalizability of the proposed models, future
work could add stress tests using simulated

recent standards and

environments or historical scenarios

characterized by extreme conditions, such as

high inflation rates exceeding 10% or
characteristics of subprime mortgage loans, to
support more resilient risk assessment

frameworks for banks, financial institutions,
and regulators.

6 Conclusion

The study showed that ML boosting algorithms,
including Gradient Boosting, XGBoost, and
Light GBM, outperformed Logistic Regression
in predicting mortgage loan defaults. The paper
found that XGBoost and Light GBM were the
top-performers with 98% accuracy on the
testing data. The results were based on Freddie
Mac data, a rich set of loan, borrower and
property  characteristics, combined with
boosting  algorithms  with  regularization
techniques and hyper-parameter tuning within a
data-driven framework. The finding supported
the key hypothesis that ML boosting algorithms,
especially XGBoost and Light GBM, were more
accurate compared to the traditional Logistic
Regression model in predicting mortgage loan
defaults.
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These ML models, XGBoost and Light GBM,
were well-positioned to capture nonlinear

patterns  in  borrower credit  profiles
simultaneously ~with the macroeconomic
landscape to improve model prediction

accuracy. Although the ML boosting models
provided improved accuracy, traditional models
such as Logistic Regression are likely to remain
beneficial for interpreting the impacts of
specific risk factors and economic indicators.

The study can be used as guidance for ML
algorithm selection and designing a system that
can be used to predict loan defaults in credit risk
assessment for large banks and the financial
industry. This would help identify “bad” loans
in a timely manner and minimize potential loss.
Future applications of this research would
consist of applying the same techniques in the
prediction of binary outcomes in any field. Al
and ML tools will help professionals make
better predictions, reduce errors, and achieve
more effective and accurate decisions.
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Appendix

Table A1. Model performance results for LR, GB, LightGBM and XGBoost ML algorithm
before hyper-parameter optimization.

Model Logistic Regression Gradient Boosting Light GBM XGBoost
Metrics Training Testing Training Testing Training Testing Training Testing
Accuracy 0.665 0.678 0.756 0.774 0.843 0.852 0.966 0.965
AUC 0.665 0.678 0.756 0.774 0.843 0.852 0.966 0.965
F1 Score 0.669 0.685 0.758 0.781 0.850 0.861 0.966 0.965
Sensitivity 0.676 0.700 0.766 0.805 0.894 0.913 0.962 0.959
Specificity 0.655 0.656 0.745 0.742 0.791 0.791 0.969 0.972
TPR 0.676 0.700 0.766 0.805 0.894 0.913 0.962 0.959
FPR 0.345 0.345 0.255 0.258 0.209 0.209 0.031 0.029
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